19,107 research outputs found

    Intentions of Vulnerable Road Users - Detection and Forecasting by Means of Machine Learning

    Full text link
    Avoiding collisions with vulnerable road users (VRUs) using sensor-based early recognition of critical situations is one of the manifold opportunities provided by the current development in the field of intelligent vehicles. As especially pedestrians and cyclists are very agile and have a variety of movement options, modeling their behavior in traffic scenes is a challenging task. In this article we propose movement models based on machine learning methods, in particular artificial neural networks, in order to classify the current motion state and to predict the future trajectory of VRUs. Both model types are also combined to enable the application of specifically trained motion predictors based on a continuously updated pseudo probabilistic state classification. Furthermore, the architecture is used to evaluate motion-specific physical models for starting and stopping and video-based pedestrian motion classification. A comprehensive dataset consisting of 1068 pedestrian and 494 cyclist scenes acquired at an urban intersection is used for optimization, training, and evaluation of the different models. The results show substantial higher classification rates and the ability to earlier recognize motion state changes with the machine learning approaches compared to interacting multiple model (IMM) Kalman Filtering. The trajectory prediction quality is also improved for all kinds of test scenes, especially when starting and stopping motions are included. Here, 37\% and 41\% lower position errors were achieved on average, respectively

    Deep Grid Net (DGN): A Deep Learning System for Real-Time Driving Context Understanding

    Full text link
    Grid maps obtained from fused sensory information are nowadays among the most popular approaches for motion planning for autonomous driving cars. In this paper, we introduce Deep Grid Net (DGN), a deep learning (DL) system designed for understanding the context in which an autonomous car is driving. DGN incorporates a learned driving environment representation based on Occupancy Grids (OG) obtained from raw Lidar data and constructed on top of the Dempster-Shafer (DS) theory. The predicted driving context is further used for switching between different driving strategies implemented within EB robinos, Elektrobit's Autonomous Driving (AD) software platform. Based on genetic algorithms (GAs), we also propose a neuroevolutionary approach for learning the tuning hyperparameters of DGN. The performance of the proposed deep network has been evaluated against similar competing driving context estimation classifiers

    Review on Computer Vision Techniques in Emergency Situation

    Full text link
    In emergency situations, actions that save lives and limit the impact of hazards are crucial. In order to act, situational awareness is needed to decide what to do. Geolocalized photos and video of the situations as they evolve can be crucial in better understanding them and making decisions faster. Cameras are almost everywhere these days, either in terms of smartphones, installed CCTV cameras, UAVs or others. However, this poses challenges in big data and information overflow. Moreover, most of the time there are no disasters at any given location, so humans aiming to detect sudden situations may not be as alert as needed at any point in time. Consequently, computer vision tools can be an excellent decision support. The number of emergencies where computer vision tools has been considered or used is very wide, and there is a great overlap across related emergency research. Researchers tend to focus on state-of-the-art systems that cover the same emergency as they are studying, obviating important research in other fields. In order to unveil this overlap, the survey is divided along four main axes: the types of emergencies that have been studied in computer vision, the objective that the algorithms can address, the type of hardware needed and the algorithms used. Therefore, this review provides a broad overview of the progress of computer vision covering all sorts of emergencies.Comment: 25 page

    Dynamic Risk Assessment for Vehicles of Higher Automation Levels by Deep Learning

    Full text link
    Vehicles of higher automation levels require the creation of situation awareness. One important aspect of this situation awareness is an understanding of the current risk of a driving situation. In this work, we present a novel approach for the dynamic risk assessment of driving situations based on images of a front stereo camera using deep learning. To this end, we trained a deep neural network with recorded monocular images, disparity maps and a risk metric for diverse traffic scenes. Our approach can be used to create the aforementioned situation awareness of vehicles of higher automation levels and can serve as a heterogeneous channel to systems based on radar or lidar sensors that are used traditionally for the calculation of risk metrics

    Drive Video Analysis for the Detection of Traffic Near-Miss Incidents

    Full text link
    Because of their recent introduction, self-driving cars and advanced driver assistance system (ADAS) equipped vehicles have had little opportunity to learn, the dangerous traffic (including near-miss incident) scenarios that provide normal drivers with strong motivation to drive safely. Accordingly, as a means of providing learning depth, this paper presents a novel traffic database that contains information on a large number of traffic near-miss incidents that were obtained by mounting driving recorders in more than 100 taxis over the course of a decade. The study makes the following two main contributions: (i) In order to assist automated systems in detecting near-miss incidents based on database instances, we created a large-scale traffic near-miss incident database (NIDB) that consists of video clip of dangerous events captured by monocular driving recorders. (ii) To illustrate the applicability of NIDB traffic near-miss incidents, we provide two primary database-related improvements: parameter fine-tuning using various near-miss scenes from NIDB, and foreground/background separation into motion representation. Then, using our new database in conjunction with a monocular driving recorder, we developed a near-miss recognition method that provides automated systems with a performance level that is comparable to a human-level understanding of near-miss incidents (64.5% vs. 68.4% at near-miss recognition, 61.3% vs. 78.7% at near-miss detection).Comment: Accepted to ICRA 201

    Machine Learning for Vehicular Networks

    Full text link
    The emerging vehicular networks are expected to make everyday vehicular operation safer, greener, and more efficient, and pave the path to autonomous driving in the advent of the fifth generation (5G) cellular system. Machine learning, as a major branch of artificial intelligence, has been recently applied to wireless networks to provide a data-driven approach to solve traditionally challenging problems. In this article, we review recent advances in applying machine learning in vehicular networks and attempt to bring more attention to this emerging area. After a brief overview of the major concept of machine learning, we present some application examples of machine learning in solving problems arising in vehicular networks. We finally discuss and highlight several open issues that warrant further research.Comment: Accepted by IEEE Vehicular Technology Magazin

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    nn-dependability-kit: Engineering Neural Networks for Safety-Critical Autonomous Driving Systems

    Full text link
    Can engineering neural networks be approached in a disciplined way similar to how engineers build software for civil aircraft? We present nn-dependability-kit, an open-source toolbox to support safety engineering of neural networks for autonomous driving systems. The rationale behind nn-dependability-kit is to consider a structured approach (via Goal Structuring Notation) to argue the quality of neural networks. In particular, the tool realizes recent scientific results including (a) novel dependability metrics for indicating sufficient elimination of uncertainties in the product life cycle, (b) formal reasoning engine for ensuring that the generalization does not lead to undesired behaviors, and (c) runtime monitoring for reasoning whether a decision of a neural network in operation is supported by prior similarities in the training data. A proprietary version of nn-dependability-kit has been used to improve the quality of a level-3 autonomous driving component developed by Audi for highway maneuvers.Comment: Tool available at https://github.com/dependable-ai/nn-dependability-ki

    VSSA-NET: Vertical Spatial Sequence Attention Network for Traffic Sign Detection

    Full text link
    Although traffic sign detection has been studied for years and great progress has been made with the rise of deep learning technique, there are still many problems remaining to be addressed. For complicated real-world traffic scenes, there are two main challenges. Firstly, traffic signs are usually small size objects, which makes it more difficult to detect than large ones; Secondly, it is hard to distinguish false targets which resemble real traffic signs in complex street scenes without context information. To handle these problems, we propose a novel end-to-end deep learning method for traffic sign detection in complex environments. Our contributions are as follows: 1) We propose a multi-resolution feature fusion network architecture which exploits densely connected deconvolution layers with skip connections, and can learn more effective features for the small size object; 2) We frame the traffic sign detection as a spatial sequence classification and regression task, and propose a vertical spatial sequence attention (VSSA) module to gain more context information for better detection performance. To comprehensively evaluate the proposed method, we do experiments on several traffic sign datasets as well as the general object detection dataset and the results have shown the effectiveness of our proposed method

    Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks

    Full text link
    Lane detection in driving scenes is an important module for autonomous vehicles and advanced driver assistance systems. In recent years, many sophisticated lane detection methods have been proposed. However, most methods focus on detecting the lane from one single image, and often lead to unsatisfactory performance in handling some extremely-bad situations such as heavy shadow, severe mark degradation, serious vehicle occlusion, and so on. In fact, lanes are continuous line structures on the road. Consequently, the lane that cannot be accurately detected in one current frame may potentially be inferred out by incorporating information of previous frames. To this end, we investigate lane detection by using multiple frames of a continuous driving scene, and propose a hybrid deep architecture by combining the convolutional neural network (CNN) and the recurrent neural network (RNN). Specifically, information of each frame is abstracted by a CNN block, and the CNN features of multiple continuous frames, holding the property of time-series, are then fed into the RNN block for feature learning and lane prediction. Extensive experiments on two large-scale datasets demonstrate that, the proposed method outperforms the competing methods in lane detection, especially in handling difficult situations.Comment: IEEE Transactions on Vehicular Technology, 69(1), 202
    • …
    corecore