334 research outputs found

    Models for Synthetic Aperture Radar Image Analysis

    Get PDF
    After reviewing some classical statistical hypothesis commonly used in image processing and analysis, this paper presents some models that are useful in synthetic aperture radar (SAR) image analysis

    Integrating Incidence Angle Dependencies Into the Clustering-Based Segmentation of SAR Images

    Get PDF
    Synthetic aperture radar systems perform signal acquisition under varying incidence angles and register an implicit intensity decay from near to far range. Owing to the geometrical interaction between microwaves and the imaged targets, the rates at which intensities decay depend on the nature of the targets, thus rendering single-rate image correction approaches only partially successful. The decay, also known as the incidence angle effect, impacts the segmentation of wide-swath images performed on absolute intensity values. We propose to integrate the target-specific intensity decay rates into a nonstationary statistical model, for use in a fully automatic and unsupervised segmentation algorithm. We demonstrate this concept by assuming Gaussian distributed log-intensities and linear decay rates, a fitting approximation for the smooth systematic decay observed for extended flat targets. The segmentation is performed on Sentinel-1, Radarsat-2, and UAVSAR wide-swath scenes containing open water, sea ice, and oil slicks. As a result, we obtain segments connected throughout the entire incidence angle range, thus overcoming the limitations of modeling that does not account for different per-target decays. The model simplicity also allows for short execution times and presents the segmentation approach as a potential operational algorithm. In addition, we estimate the log-linear decay rates and examine their potential for a physical interpretation of the segments

    Sea Ice Extraction via Remote Sensed Imagery: Algorithms, Datasets, Applications and Challenges

    Full text link
    The deep learning, which is a dominating technique in artificial intelligence, has completely changed the image understanding over the past decade. As a consequence, the sea ice extraction (SIE) problem has reached a new era. We present a comprehensive review of four important aspects of SIE, including algorithms, datasets, applications, and the future trends. Our review focuses on researches published from 2016 to the present, with a specific focus on deep learning-based approaches in the last five years. We divided all relegated algorithms into 3 categories, including classical image segmentation approach, machine learning-based approach and deep learning-based methods. We reviewed the accessible ice datasets including SAR-based datasets, the optical-based datasets and others. The applications are presented in 4 aspects including climate research, navigation, geographic information systems (GIS) production and others. It also provides insightful observations and inspiring future research directions.Comment: 24 pages, 6 figure

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    • …
    corecore