6,077 research outputs found

    Learning shape correspondence with anisotropic convolutional neural networks

    Get PDF
    Establishing correspondence between shapes is a fundamental problem in geometry processing, arising in a wide variety of applications. The problem is especially difficult in the setting of non-isometric deformations, as well as in the presence of topological noise and missing parts, mainly due to the limited capability to model such deformations axiomatically. Several recent works showed that invariance to complex shape transformations can be learned from examples. In this paper, we introduce an intrinsic convolutional neural network architecture based on anisotropic diffusion kernels, which we term Anisotropic Convolutional Neural Network (ACNN). In our construction, we generalize convolutions to non-Euclidean domains by constructing a set of oriented anisotropic diffusion kernels, creating in this way a local intrinsic polar representation of the data (`patch'), which is then correlated with a filter. Several cascades of such filters, linear, and non-linear operators are stacked to form a deep neural network whose parameters are learned by minimizing a task-specific cost. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes in very challenging settings, achieving state-of-the-art results on some of the most difficult recent correspondence benchmarks

    Deep Functional Maps: Structured Prediction for Dense Shape Correspondence

    Full text link
    We introduce a new framework for learning dense correspondence between deformable 3D shapes. Existing learning based approaches model shape correspondence as a labelling problem, where each point of a query shape receives a label identifying a point on some reference domain; the correspondence is then constructed a posteriori by composing the label predictions of two input shapes. We propose a paradigm shift and design a structured prediction model in the space of functional maps, linear operators that provide a compact representation of the correspondence. We model the learning process via a deep residual network which takes dense descriptor fields defined on two shapes as input, and outputs a soft map between the two given objects. The resulting correspondence is shown to be accurate on several challenging benchmarks comprising multiple categories, synthetic models, real scans with acquisition artifacts, topological noise, and partiality.Comment: Accepted for publication at ICCV 201

    Fractal Descriptors in the Fourier Domain Applied to Color Texture Analysis

    Get PDF
    The present work proposes the development of a novel method to provide descriptors for colored texture images. The method consists in two steps. In the first, we apply a linear transform in the color space of the image aiming at highlighting spatial structuring relations among the color of pixels. In a second moment, we apply a multiscale approach to the calculus of fractal dimension based on Fourier transform. From this multiscale operation, we extract the descriptors used to discriminate the texture represented in digital images. The accuracy of the method is verified in the classification of two color texture datasets, by comparing the performance of the proposed technique to other classical and state-of-the-art methods for color texture analysis. The results showed an advantage of almost 3% of the proposed technique over the second best approach.Comment: Chaos, Volume 21, Issue 4, 201

    Image Retrieval Using Circular Hidden Markov Models with a Garbage State

    Get PDF
    Shape-based image and video retrieval is an active research topic in multimedia information retrieval. It is well known that there are significant variations in shapes of the same category extracted from images and videos. In this paper, we propose to use circular hidden Markov models for shape recognition and image retrieval. In our approach, we use a garbage state to explicitly deal with shape mismatch caused by shape deformation and occlusion. We will propose a modi¯ed circular hidden Markov model (HMM)for shape-based image retrieval and then use circular HMMs with a garbage state to further improve the performance. To evaluate the proposed algorithms, we have conducted experiments using the database of the MPEG-7 Core Experiments Shape-1, Part B. The experiments show that our approaches are robust to shape deformations such as shape variations and occlusion. The performance of our approaches is comparable to that of the state-of-the-art shape-based image retrieval systems in terms of accuracy and speed

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field
    corecore