450 research outputs found

    A Mathematical Model for Interpretable Clinical Decision Support with Applications in Gynecology

    Get PDF
    Over time, methods for the development of clinical decision support (CDS) systems have evolved from interpretable and easy-to-use scoring systems to very complex and non-interpretable mathematical models. In order to accomplish effective decision support, CDS systems should provide information on how the model arrives at a certain decision. To address the issue of incompatibility between performance, interpretability and applicability of CDS systems, this paper proposes an innovative model structure, automatically leading to interpretable and easily applicable models. The resulting models can be used to guide clinicians when deciding upon the appropriate treatment, estimating patient-specific risks and to improve communication with patients.We propose the interval coded scoring (ICS) system, which imposes that the effect of each variable on the estimated risk is constant within consecutive intervals. The number and position of the intervals are automatically obtained by solving an optimization problem, which additionally performs variable selection. The resulting model can be visualised by means of appealing scoring tables and color bars. ICS models can be used within software packages, in smartphone applications, or on paper, which is particularly useful for bedside medicine and home-monitoring. The ICS approach is illustrated on two gynecological problems: diagnosis of malignancy of ovarian tumors using a dataset containing 3,511 patients, and prediction of first trimester viability of pregnancies using a dataset of 1,435 women. Comparison of the performance of the ICS approach with a range of prediction models proposed in the literature illustrates the ability of ICS to combine optimal performance with the interpretability of simple scoring systems.The ICS approach can improve patient-clinician communication and will provide additional insights in the importance and influence of available variables. Future challenges include extensions of the proposed methodology towards automated detection of interaction effects, multi-class decision support systems, prognosis and high-dimensional data

    Improved modeling of clinical data with kernel methods

    Get PDF
    Objective: Despite the rise of high-throughput technologies, clinical data such as age, gender and medical history guide clinical management for most diseases and examinations. To improve clinical management, available patient information should be fully exploited. This requires appropriate modeling of relevant parameters. Methods: When kernel methods are used, traditional kernel functions such as the linear kernel are often applied to the set of clinical parameters. These kernel functions, however, have their disadvantages due to the specific characteristics of clinical data, being a mix of variable types with each variable its own range. We propose a new kernel function specifically adapted to the characteristics of clinical data. Results: The clinical kernel function provides a better representation of patients' similarity by equalizing the influence of all variables and taking into account the range r of the variables. Moreover, it is robust with respect to changes in r. Incorporated in a least squares support vector machine, the new kernel function results in significantly improved diagnosis, prognosis and prediction of therapy response. This is illustrated on four clinical data sets within gynecology, with an average increase in test area under the ROC curve (AUC) of 0.023, 0.021, 0.122 and 0.019, respectively. Moreover, when combining clinical parameters and expression data in three case studies on breast cancer, results improved overall with use of the new kernel function and when considering both data types in a weighted fashion, with a larger weight assigned to the clinical parameters. The increase in AUC with respect to a standard kernel function and/or unweighted data combination was maximum 0.127, 0.042 and 0.118 for the three case studies. Conclusion: For clinical data consisting of variables of different types, the proposed kernel function which takes into account the type and range of each variable - has shown to be a better alternative for linear and non-linear classification problems. (C) 2011 Elsevier B.V. All rights reserved

    Identifying Biomarkers from Mass Spectrometry Data with Ordinal Outcome

    Get PDF
    In recent years, there has been an increased interest in using protein mass spectroscopy to identify molecular markers that discriminate diseased from healthy individuals. Existing methods are tailored towards classifying observations into nominal categories. Sometimes, however, the outcome of interest may be measured on an ordered scale. Ignoring this natural ordering results in some loss of information. In this paper, we propose a Bayesian model for the analysis of mass spectrometry data with ordered outcome. The method provides a unified approach for identifying relevant markers and predicting class membership. This is accomplished by building a stochastic search variable selection method within an ordinal outcome model. We apply the methodology to mass spectrometry data on ovarian cancer cases and healthy individuals. We also utilize wavelet-based techniques to remove noise from the mass spectra prior to analysis. We identify protein markers associated with being healthy, having low grade ovarian cancer, or being a high grade case. For comparison, we repeated the analysis using conventional classification procedures and found improved predictive accuracy with our method

    Automated characterisation of ultrasound images of ovarian tumours: the diagnostic accuracy of a support vector machine and image processing with a local binary pattern operator

    Get PDF
    Introduction: Preoperative characterisation of ovarian masses into benign or malignant is of paramount importance to optimise patient management. Objectives: In this study, we developed and validated a computerised model to characterise ovarian masses as benign or malignant. Materials and methods: Transvaginal 2D B mode static ultrasound images of 187 ovarian masses with known histological diagnosis were included. Images were first pre-processed and enhanced, and Local Binary Pattern Histograms were then extracted from 2 × 2 blocks of each image. A Support Vector Machine (SVM) was trained using stratified cross validation with randomised sampling. The process was repeated 15 times and in each round 100 images were randomly selected. Results: The SVM classified the original non-treated static images as benign or malignant masses with an average accuracy of 0.62 (95% CI: 0.59-0.65). This performance significantly improved to an average accuracy of 0.77 (95% CI: 0.75-0.79) when images were pre-processed, enhanced and treated with a Local Binary Pattern operator (mean difference 0.15: 95% 0.11-0.19, p < 0.0001, two-tailed t test). Conclusion: We have shown that an SVM can classify static 2D B mode ultrasound images of ovarian masses into benign and malignant categories. The accuracy improves if texture related LBP features extracted from the images are considered

    Do serum biomarkers really measure breast cancer?

    Get PDF
    Background Because screening mammography for breast cancer is less effective for premenopausal women, we investigated the feasibility of a diagnostic blood test using serum proteins. Methods This study used a set of 98 serum proteins and chose diagnostically relevant subsets via various feature-selection techniques. Because of significant noise in the data set, we applied iterated Bayesian model averaging to account for model selection uncertainty and to improve generalization performance. We assessed generalization performance using leave-one-out cross-validation (LOOCV) and receiver operating characteristic (ROC) curve analysis. Results The classifiers were able to distinguish normal tissue from breast cancer with a classification performance of AUC = 0.82 ± 0.04 with the proteins MIF, MMP-9, and MPO. The classifiers distinguished normal tissue from benign lesions similarly at AUC = 0.80 ± 0.05. However, the serum proteins of benign and malignant lesions were indistinguishable (AUC = 0.55 ± 0.06). The classification tasks of normal vs. cancer and normal vs. benign selected the same top feature: MIF, which suggests that the biomarkers indicated inflammatory response rather than cancer. Conclusion Overall, the selected serum proteins showed moderate ability for detecting lesions. However, they are probably more indicative of secondary effects such as inflammation rather than specific for malignancy.United States. Dept. of Defense. Breast Cancer Research Program (Grant No. W81XWH-05-1-0292)National Institutes of Health (U.S.) (R01 CA-112437-01)National Institutes of Health (U.S.) (NIH CA 84955

    Machine learning and data mining frameworks for predicting drug response in cancer:An overview and a novel <i>in silico</i> screening process based on association rule mining

    Get PDF

    Statistical Methods for Integrating Genomics Data

    Get PDF
    This dissertation focuses on methodology to integrate multiplatform genomic data with cancer applications. Such integration facilitates the discovery of biological information crucial to the development of targeted treatments. We present iBAG (integrative Bayesian Analysis of Genomics data), a two-step hierarchical Bayesian model that uses the known biological relationships between genetic platforms to integrate an arbitrary number of platforms in a single model. This method identifies genes important to a clinical outcome, such as survival, and the integration approach also allows us to identify which platforms are modulating the important gene effects. A glioblastoma multiforme (GBM) data set publicly available from The Cancer Genome Atlas (TCGA) is analyzed with iBAG. We flag several genes as important to survival time, and we include a discussion of these genes in a biological context. We then present a nonlinear formulation of iBAG, which increases the flexibility of the model to accommodate nonlinear relationships among the data platforms. The TCGA GBM data is again analyzed, and we carefully compare the results from both the linear and nonlinear formulation. Next we present a pathway iBAG model, piBAG, which includes gene pathway membership information and utilizes hierarchical shrinkage to simultaneously select important genes and assign pathway scores. The integration of multiple genomic platforms again allows us to determine which platform is regulating each important gene, and it also provides insight as to through which platform each pathway is taking effect. We apply this method to a different subset of the TCGA GBM data. Finally, we present integrative heatmaps, a novel visualization tool for illustrating integrated data. We use a TCGA colorectal cancer data set to demonstrate the integrative heatmaps. Through the various simulation studies and data applications in this dissertation, we conclude that the methods presented achieve their respective goals and outperform standard methods. We demonstrate that our methods provide many advantages, including increased estimation efficiency, increased power, lower false discovery rates, and deeper biological insight into the genetic mechanics of cancer development and progression

    Very Important Pool (VIP) genes – an application for microarray-based molecular signatures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in DNA microarray technology portend that molecular signatures from which microarray will eventually be used in clinical environments and personalized medicine. Derivation of biomarkers is a large step beyond hypothesis generation and imposes considerably more stringency for accuracy in identifying informative gene subsets to differentiate phenotypes. The inherent nature of microarray data, with fewer samples and replicates compared to the large number of genes, requires identifying informative genes prior to classifier construction. However, improving the ability to identify differentiating genes remains a challenge in bioinformatics.</p> <p>Results</p> <p>A new hybrid gene selection approach was investigated and tested with nine publicly available microarray datasets. The new method identifies a Very Important Pool (VIP) of genes from the broad patterns of gene expression data. The method uses a bagging sampling principle, where the re-sampled arrays are used to identify the most informative genes. Frequency of selection is used in a repetitive process to identify the VIP genes. The putative informative genes are selected using two methods, t-statistic and discriminatory analysis. In the t-statistic, the informative genes are identified based on p-values. In the discriminatory analysis, disjoint Principal Component Analyses (PCAs) are conducted for each class of samples, and genes with high discrimination power (DP) are identified. The VIP gene selection approach was compared with the p-value ranking approach. The genes identified by the VIP method but not by the p-value ranking approach are also related to the disease investigated. More importantly, these genes are part of the pathways derived from the common genes shared by both the VIP and p-ranking methods. Moreover, the binary classifiers built from these genes are statistically equivalent to those built from the top 50 p-value ranked genes in distinguishing different types of samples.</p> <p>Conclusion</p> <p>The VIP gene selection approach could identify additional subsets of informative genes that would not always be selected by the p-value ranking method. These genes are likely to be additional true positives since they are a part of pathways identified by the p-value ranking method and expected to be related to the relevant biology. Therefore, these additional genes derived from the VIP method potentially provide valuable biological insights.</p
    corecore