5,738 research outputs found

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Everyday walking with Parkinson's disease: understanding personal challenges and strategies

    Get PDF
    PURPOSE: This qualitative study was designed to explore the personal experience of everyday walking with Parkinson's disease (PD), the challenges and the strategies employed to compensate for difficulties, to help contextualise the scientific knowledge base. METHODS: Semi-structured interviews were undertaken with a sample of 20 people with idiopathic PD (12 male, 8 female; mean age 65 years (range 50 - 80); mean disease duration 10 years (range 2.5 - 26). Verbatim interview transcripts were analyzed thematically using NUD*IST N6 qualitative data analysis software. RESULTS: Walking was invariably performed as an integral part of a purposeful activity within a specific context, termed walking 'plus', with challenges encountered by people with PD in three main areas: Undertaking tasks; negotiating environments; and making transitions to walking. The two key strategies to compensate for difficulties experienced were monitoring through the use of concentration, and correcting through generating rhythm and size of steps. Carers supported monitoring and correcting. CONCLUSION: People with PD need to constantly assess and drive their walking performance. Attentional resources, which can themselves be compromised in PD, were used to accomplish what is normally a largely automatic activity. Personal accounts support scientific hypotheses. Rehabilitation interventions and measurements in PD need to reflect both the physical and psychosocial context of everyday walking

    Human Gait Analysis in Neurodegenerative Diseases: a Review

    Get PDF
    This paper reviews the recent literature on technologies and methodologies for quantitative human gait analysis in the context of neurodegnerative diseases. The use of technological instruments can be of great support in both clinical diagnosis and severity assessment of these pathologies. In this paper, sensors, features and processing methodologies have been reviewed in order to provide a highly consistent work that explores the issues related to gait analysis. First, the phases of the human gait cycle are briefly explained, along with some non-normal gait patterns (gait abnormalities) typical of some neurodegenerative diseases. The work continues with a survey on the publicly available datasets principally used for comparing results. Then the paper reports the most common processing techniques for both feature selection and extraction and for classification and clustering. Finally, a conclusive discussion on current open problems and future directions is outlined

    The Role of Movement Analysis in Diagnosing and Monitoring Neurodegenerative Conditions: Insights from Gait and Postural Control

    Get PDF
    Quantifying gait and postural control adds valuable information that aids in understanding neurological conditions where motor symptoms predominate and cause considerable functional impairment. Disease-specific clinical scales exist; however, they are often susceptible to subjectivity, and can lack sensitivity when identifying subtle gait and postural impairments in prodromal cohorts and longitudinally to document disease progression. Numerous devices are available to objectively quantify a range of measurement outcomes pertaining to gait and postural control; however, efforts are required to standardise and harmonise approaches that are specific to the neurological condition and clinical assessment. Tools are urgently needed that address a number of unmet needs in neurological practice. Namely, these include timely and accurate diagnosis; disease stratification; risk prediction; tracking disease progression; and decision making for intervention optimisation and maximising therapeutic response (such as medication selection, disease staging, and targeted support). Using some recent examples of research across a range of relevant neurological conditions—including Parkinson’s disease, ataxia, and dementia— we will illustrate evidence that supports progress against these unmet clinical needs. We summarise the novel ‘big data’ approaches that utilise data mining and machine learning techniques to improve disease classification and risk prediction, and conclude with recommendations for future direction

    Permutation entropy and irreversibility in gait kinematic time series from patients with mild cognitive decline and early alzheimer’s dementia

    Full text link
    Gait is a basic cognitive purposeful action that has been shown to be altered in late stages of neurodegenerative dementias. Nevertheless, alterations are less clear in mild forms of dementia, and the potential use of gait analysis as a biomarker of initial cognitive decline has hitherto mostly been neglected. Herein, we report the results of a study of gait kinematic time series for two groups of patients (mild cognitive impairment and mild Alzheimer’s disease) and a group of matched control subjects. Two metrics based on permutation patterns are considered, respectively measuring the complexity and irreversibility of the time series. Results indicate that kinematic disorganisation is present in early phases of cognitive impairment; in addition, they depict a rich scenario, in which some joint movements display an increased complexity and irreversibility, while others a marked decrease. Beyond their potential use as biomarkers, complexity and irreversibility metrics can open a new door to the understanding of the role of the nervous system in gait, as well as its adaptation and compensatory mechanismsThis research was funded through the Premio del Ilustre Colegio Profesional de Fisioterapeutas de la Comunidad De Madrid, prize number ICPFM-IX-201

    Multi-centre classification of functional neurological disorders based on resting-state functional connectivity.

    Get PDF
    BACKGROUND Patients suffering from functional neurological disorder (FND) experience disabling neurological symptoms not caused by an underlying classical neurological disease (such as stroke or multiple sclerosis). The diagnosis is made based on reliable positive clinical signs, but clinicians often require additional time- and cost consuming medical tests and examinations. Resting-state functional connectivity (RS FC) showed its potential as an imaging-based adjunctive biomarker to help distinguish patients from healthy controls and could represent a "rule-in" procedure to assist in the diagnostic process. However, the use of RS FC depends on its applicability in a multi-centre setting, which is particularly susceptible to inter-scanner variability. The aim of this study was to test the robustness of a classification approach based on RS FC in a multi-centre setting. METHODS This study aimed to distinguish 86 FND patients from 86 healthy controls acquired in four different centres using a multivariate machine learning approach based on whole-brain resting-state functional connectivity. First, previously published results were replicated in each centre individually (intra-centre cross-validation) and its robustness across inter-scanner variability was assessed by pooling all the data (pooled cross-validation). Second, we evaluated the generalizability of the method by using data from each centre once as a test set, and the data from the remaining centres as a training set (inter-centre cross-validation). RESULTS FND patients were successfully distinguished from healthy controls in the replication step (accuracy of 74%) as well as in each individual additional centre (accuracies of 73%, 71% and 70%). The pooled cross validation confirmed that the classifier was robust with an accuracy of 72%. The results survived post-hoc adjustment for anxiety, depression, psychotropic medication intake, and symptom severity. The most discriminant features involved the angular- and supramarginal gyri, sensorimotor cortex, cingular- and insular cortex, and hippocampal regions. The inter-centre validation step did not exceed chance level (accuracy below 50%). CONCLUSIONS The results demonstrate the applicability of RS FC to correctly distinguish FND patients from healthy controls in different centres and its robustness against inter-scanner variability. In order to generalize its use across different centres and aim for clinical application, future studies should work towards optimization of acquisition parameters and include neurological and psychiatric control groups presenting with similar symptoms
    corecore