264 research outputs found

    Variable selection for the multicategory SVM via adaptive sup-norm regularization

    Get PDF
    The Support Vector Machine (SVM) is a popular classification paradigm in machine learning and has achieved great success in real applications. However, the standard SVM can not select variables automatically and therefore its solution typically utilizes all the input variables without discrimination. This makes it difficult to identify important predictor variables, which is often one of the primary goals in data analysis. In this paper, we propose two novel types of regularization in the context of the multicategory SVM (MSVM) for simultaneous classification and variable selection. The MSVM generally requires estimation of multiple discriminating functions and applies the argmax rule for prediction. For each individual variable, we propose to characterize its importance by the supnorm of its coefficient vector associated with different functions, and then minimize the MSVM hinge loss function subject to a penalty on the sum of supnorms. To further improve the supnorm penalty, we propose the adaptive regularization, which allows different weights imposed on different variables according to their relative importance. Both types of regularization automate variable selection in the process of building classifiers, and lead to sparse multi-classifiers with enhanced interpretability and improved accuracy, especially for high dimensional low sample size data. One big advantage of the supnorm penalty is its easy implementation via standard linear programming. Several simulated examples and one real gene data analysis demonstrate the outstanding performance of the adaptive supnorm penalty in various data settings.Comment: Published in at http://dx.doi.org/10.1214/08-EJS122 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Gene Expression-Based Glioma Classification Using Hierarchical Bayesian Vector Machines

    Get PDF
    This paper considers several Bayesian classification methods for the analysis of the glioma cancer with microarray data based on reproducing kernel Hilbert space under the multiclass setup. We consider the multinomial logit likelihood as well as the likelihood related to the multiclass Support Vector Machine (SVM) model. It is shown that our proposed Bayesian classification models with multiple shrinkage parameters can produce more accurate classification scheme for the glioma cancer compared to several existing classical methods. We have also proposed a Bayesian variable selection scheme for selecting the differentially expressed genes integrated with our model. This integrated approach improves classifier design by yielding simultaneous gene selection

    A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer diagnosis and clinical outcome prediction are among the most important emerging applications of gene expression microarray technology with several molecular signatures on their way toward clinical deployment. Use of the most accurate classification algorithms available for microarray gene expression data is a critical ingredient in order to develop the best possible molecular signatures for patient care. As suggested by a large body of literature to date, support vector machines can be considered "best of class" algorithms for classification of such data. Recent work, however, suggests that random forest classifiers may outperform support vector machines in this domain.</p> <p>Results</p> <p>In the present paper we identify methodological biases of prior work comparing random forests and support vector machines and conduct a new rigorous evaluation of the two algorithms that corrects these limitations. Our experiments use 22 diagnostic and prognostic datasets and show that support vector machines outperform random forests, often by a large margin. Our data also underlines the importance of sound research design in benchmarking and comparison of bioinformatics algorithms.</p> <p>Conclusion</p> <p>We found that both on average and in the majority of microarray datasets, random forests are outperformed by support vector machines both in the settings when no gene selection is performed and when several popular gene selection methods are used.</p

    Elephant Search with Deep Learning for Microarray Data Analysis

    Full text link
    Even though there is a plethora of research in Microarray gene expression data analysis, still, it poses challenges for researchers to effectively and efficiently analyze the large yet complex expression of genes. The feature (gene) selection method is of paramount importance for understanding the differences in biological and non-biological variation between samples. In order to address this problem, a novel elephant search (ES) based optimization is proposed to select best gene expressions from the large volume of microarray data. Further, a promising machine learning method is envisioned to leverage such high dimensional and complex microarray dataset for extracting hidden patterns inside to make a meaningful prediction and most accurate classification. In particular, stochastic gradient descent based Deep learning (DL) with softmax activation function is then used on the reduced features (genes) for better classification of different samples according to their gene expression levels. The experiments are carried out on nine most popular Cancer microarray gene selection datasets, obtained from UCI machine learning repository. The empirical results obtained by the proposed elephant search based deep learning (ESDL) approach are compared with most recent published article for its suitability in future Bioinformatics research.Comment: 12 pages, 5 Tabl

    A cDNA Microarray Gene Expression Data Classifier for Clinical Diagnostics Based on Graph Theory

    Get PDF
    Despite great advances in discovering cancer molecular profiles, the proper application of microarray technology to routine clinical diagnostics is still a challenge. Current practices in the classification of microarrays' data show two main limitations: the reliability of the training data sets used to build the classifiers, and the classifiers' performances, especially when the sample to be classified does not belong to any of the available classes. In this case, state-of-the-art algorithms usually produce a high rate of false positives that, in real diagnostic applications, are unacceptable. To address this problem, this paper presents a new cDNA microarray data classification algorithm based on graph theory and is able to overcome most of the limitations of known classification methodologies. The classifier works by analyzing gene expression data organized in an innovative data structure based on graphs, where vertices correspond to genes and edges to gene expression relationships. To demonstrate the novelty of the proposed approach, the authors present an experimental performance comparison between the proposed classifier and several state-of-the-art classification algorithm

    REC: Fast sparse regression-based multicategory classification

    Get PDF
    Recent advance in technology enables researchers to gather and store enormous data sets with ultra high dimensionality. In bioinformatics, microarray and next generation sequencing technologies can produce data with tens of thousands of predictors of biomarkers. On the other hand, the corresponding sample sizes are often limited. For classification problems, to predict new observations with high accuracy, and to better understand the effect of predictors on classification, it is desirable, and often necessary, to train the classifier with variable selection. In the literature, sparse regularized classification techniques have been popular due to the ability of simultaneous classification and variable selection. Despite its success, such a sparse penalized method may have low computational speed, when the dimension of the problem is ultra high. To overcome this challenge, we propose a new sparse REgression based multicategory Classifier (REC). Our method uses a simplex to represent different categories of the classification problem. A major advantage of REC is that the optimization can be decoupled into smaller independent sparse penalized regression problems, and hence solved by using parallel computing. Consequently, REC enjoys an extraordinarily fast computational speed. Moreover, REC is able to provide class conditional probability estimation. Simulated examples and applications on microarray and next generation sequencing data suggest that REC is very competitive when compared to several existing methods

    Innovative Hybridisation of Genetic Algorithms and Neural Networks in Detecting Marker Genes for Leukaemia Cancer

    Get PDF
    Methods for extracting marker genes that trigger the growth of cancerous cells from a high level of complexity microarrays are of much interest from the computing community. Through the identified genes, the pathology of cancerous cells can be revealed and early precaution can be taken to prevent further proliferation of cancerous cells. In this paper, we propose an innovative hybridised gene identification framework based on genetic algorithms and neural networks to identify marker genes for leukaemia disease. Our approach confirms that high classification accuracy does not ensure the optimal set of genes have been identified and our model delivers a more promising set of genes even with a lower classification accurac

    Evaluating classification accuracy for modern learning approaches

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149333/1/sim8103_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149333/2/sim8103.pd
    • ā€¦
    corecore