1,738 research outputs found

    Intelligent intrusion detection in low power IoTs

    Get PDF

    CONDOR: A Hybrid IDS to Offer Improved Intrusion Detection

    Get PDF
    Intrusion Detection Systems are an accepted and very useful option to monitor, and detect malicious activities. However, Intrusion Detection Systems have inherent limitations which lead to false positives and false negatives; we propose that combining signature and anomaly based IDSs should be examined. This paper contrasts signature and anomaly-based IDSs, and critiques some proposals about hybrid IDSs with signature and heuristic capabilities, before considering some of their contributions in order to include them as main features of a new hybrid IDS named CONDOR (COmbined Network intrusion Detection ORientate), which is designed to offer superior pattern analysis and anomaly detection by reducing false positive rates and administrator intervention

    Network Intrusion Detection System using Deep Learning Technique

    Get PDF
    The rise in the usage of the internet in this recent time had led to tremendous development in computer networks with large volumes of information transported daily. This development has generated lots of security threats and privacy concerns on networks and data. To tackle these issues, several protective measures have been developed including the Intrusion Detection Systems (IDSs). IDS plays a major backbone in network security and provides an extra layer of security to other security defence mechanisms in a network. However, existing IDS built on a signature base such as snort and the likes are unable to detect unknown and novel threats. Anomaly detection-based IDSs that use Machine Learning (ML) approaches are not scalable when enormous data are presented, and during modelling, the runtime increases as the dataset size increases which needs high computational resources to fulfil the runtime requirements. This thesis proposes a Feedforward Deep Neural Network (FFDNN) for an intrusion detection system that performs a binary classification on the popular NSL-Knowledge discovery and data mining (NSL-KDD) dataset. The model was developed from Keras API integrated into TensorFlow in Google's colaboratory software environment. Three variants of FFDNNs were trained using the NSL-KDD dataset and the network architecture consisted of two hidden layers with 64 and 32; 32 and 16; 512 and 256 neurons respectively, and each with the ReLu activation function. The sigmoid activation function for binary classification was used in the output layer and the prediction loss function used was the binary cross-entropy. Regularization was set to a dropout rate of 0.2 and the Adam optimizer was used. The deep neural networks were trained for 16, 20, 20 epochs respectively for batch sizes of 256, 64, and 128. After evaluating the performances of the FFDNNs on the training data, the prediction was made on test data, and accuracies of 89%, 84%, and 87% were achieved. The experiment was also conducted on the same training dataset (NSL-KDD) using the conventional machine learning algorithms (Random Forest; K-nearest neighbor; Logistic regression; Decision tree; and Naïve Bayes) and predictions of each algorithm on the test data gave different performance accuracies of 81%, 76%, 77%, 77%, 77%, respectively. The performance results of the FFDNNs were calculated based on some important metrics (FPR, FAR, F1 Measure, Precision), and these were compared to the conventional ML algorithms and the outcome shows that the deep neural networks performed best due to their dense architecture that made it scalable with the large size of the dataset and also offered a faster run time during training in contrast to the slow run time of the Conventional ML. This implies that when the dataset is large and a faster computation is required, then FFDNN is a better choice for best performance accuracy

    Intelligent Intrusion Detection of Grey Hole and Rushing Attacks in Self-Driving Vehicular Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) play a vital role in the success of self-driving and semi self-driving vehicles, where they improve safety and comfort. Such vehicles depend heavily on external communication with the surrounding environment via data control and Cooperative Awareness Messages (CAMs) exchanges. VANETs are potentially exposed to a number of attacks, such as grey hole, black hole, wormhole and rushing attacks. This work presents an intelligent Intrusion Detection System (IDS) that relies on anomaly detection to protect the external communication system from grey hole and rushing attacks. These attacks aim to disrupt the transmission between vehicles and roadside units. The IDS uses features obtained from a trace file generated in a network simulator and consists of a feed-forward neural network and a support vector machine. Additionally, the paper studies the use of a novel systematic response, employed to protect the vehicle when it encounters malicious behaviour. Our simulations of the proposed detection system show that the proposed schemes possess outstanding detection rates with a reduction in false alarms. This safe mode response system has been evaluated using four performance metrics, namely, received packets, packet delivery ratio, dropped packets and the average end to end delay, under both normal and abnormal conditions

    IMAT: A Lightweight IoT Network Intrusion Detection System based on Machine Learning techniques

    Get PDF
    Internet of Things (IoT) is one of the fast-expanding technologies nowadays, and promises to be revolutionary for the near future. IoT systems are in fact an incredible convenience due to centralized and computerized control of any electronic device. This technology allows various physical devices, home applications, vehicles, appliances, etc., to be interconnected and exposed to the Internet. On the other hand, it entails the fundamental need to protect the network from adversarial and unwanted alterations. To prevent such threats it is necessary to appeal to Intrusion Detection Systems (IDS), which can be used in information environments to monitor identified threats or anomalies. The most recent and efficient IDS applications involve the use of Machine Learning (ML) techniques which can automatically detect and prevent malicious attacks, such as distributed denial-of-service (DDoS), which represents a recurring thread to IoT networks in the last years. The work presented on this thesis comes with double purpose: build and test different light Machine Learning models which achieve great performance by running on resource-constrained devices; and at the same time we present a novel Network-based Intrusion Detection System based on the latter devices which can automatically detect IoT attack traffic. Our proposed system consists on deploying small low-powered devices to each component of an IoT environment where each device performs Machine Learning based Intrusion Detection at network level. In this work we describe and train different light-ML models which are tested on Raspberry Pis and FPGAs boards. The performance of such classifiers detecting benign and malicious traffic is presented and compared by response time, accuracy, precision, recall, f1-score and ROC-AUC metrics. The aim of this work is to test these machine learning models on recent datasets with the purpose of finding the most performing ones which can be used for intrusion-defense over IoT environments characterized by high flexibility, easy-installation and efficiency. The obtained results are above 0.99\% of accuracy for different models and they indicate that the proposed system can bring a remarkable layer of security. We show how Machine Learning applied to small low-cost devices is an efficient and versatile combination characterized by a bright future ahead.Internet of Things (IoT) is one of the fast-expanding technologies nowadays, and promises to be revolutionary for the near future. IoT systems are in fact an incredible convenience due to centralized and computerized control of any electronic device. This technology allows various physical devices, home applications, vehicles, appliances, etc., to be interconnected and exposed to the Internet. On the other hand, it entails the fundamental need to protect the network from adversarial and unwanted alterations. To prevent such threats it is necessary to appeal to Intrusion Detection Systems (IDS), which can be used in information environments to monitor identified threats or anomalies. The most recent and efficient IDS applications involve the use of Machine Learning (ML) techniques which can automatically detect and prevent malicious attacks, such as distributed denial-of-service (DDoS), which represents a recurring thread to IoT networks in the last years. The work presented on this thesis comes with double purpose: build and test different light Machine Learning models which achieve great performance by running on resource-constrained devices; and at the same time we present a novel Network-based Intrusion Detection System based on the latter devices which can automatically detect IoT attack traffic. Our proposed system consists on deploying small low-powered devices to each component of an IoT environment where each device performs Machine Learning based Intrusion Detection at network level. In this work we describe and train different light-ML models which are tested on Raspberry Pis and FPGAs boards. The performance of such classifiers detecting benign and malicious traffic is presented and compared by response time, accuracy, precision, recall, f1-score and ROC-AUC metrics. The aim of this work is to test these machine learning models on recent datasets with the purpose of finding the most performing ones which can be used for intrusion-defense over IoT environments characterized by high flexibility, easy-installation and efficiency. The obtained results are above 0.99\% of accuracy for different models and they indicate that the proposed system can bring a remarkable layer of security. We show how Machine Learning applied to small low-cost devices is an efficient and versatile combination characterized by a bright future ahead

    Shallow and deep networks intrusion detection system : a taxonomy and survey

    Get PDF
    Intrusion detection has attracted a considerable interest from researchers and industries. The community, after many years of research, still faces the problem of building reliable and efficient IDS that are capable of handling large quantities of data, with changing patterns in real time situations. The work presented in this manuscript classifies intrusion detection systems (IDS). Moreover, a taxonomy and survey of shallow and deep networks intrusion detection systems is presented based on previous and current works. This taxonomy and survey reviews machine learning techniques and their performance in detecting anomalies. Feature selection which influences the effectiveness of machine learning (ML) IDS is discussed to explain the role of feature selection in the classification and training phase of ML IDS. Finally, a discussion of the false and true positive alarm rates is presented to help researchers model reliable and efficient machine learning based intrusion detection systems

    Protecting Android Devices from Malware Attacks: A State-of-the-Art Report of Concepts, Modern Learning Models and Challenges

    Get PDF
    Advancements in microelectronics have increased the popularity of mobile devices like cellphones, tablets, e-readers, and PDAs. Android, with its open-source platform, broad device support, customizability, and integration with the Google ecosystem, has become the leading operating system for mobile devices. While Android's openness brings benefits, it has downsides like a lack of official support, fragmentation, complexity, and security risks if not maintained. Malware exploits these vulnerabilities for unauthorized actions and data theft. To enhance device security, static and dynamic analysis techniques can be employed. However, current attackers are becoming increasingly sophisticated, and they are employing packaging, code obfuscation, and encryption techniques to evade detection models. Researchers prefer flexible artificial intelligence methods, particularly deep learning models, for detecting and classifying malware on Android systems. In this survey study, a detailed literature review was conducted to investigate and analyze how deep learning approaches have been applied to malware detection on Android systems. The study also provides an overview of the Android architecture, datasets used for deep learning-based detection, and open issues that will be studied in the future
    corecore