7,765 research outputs found

    Classification and comparison of massive MIMO propagation channel models

    Get PDF
    Considering great benefits brought by massive multiple-input multiple-output (MIMO) technologies in Internet of things (IoT), it is of vital importance to analyze new massive MIMO channel characteristics and develop corresponding channel models. In the literature, various massive MIMO channel models have been proposed and classified with different but confusing methods, i.e., physical vs. analytical method and deterministic vs. stochastic method. To have a better understanding and usage of massive MIMO channel models, this work summarizes different classification methods and presents an up-to-date unified classification framework, i.e., artificial intelligence (AI)-based predictive channel models and classical non-predictive channel models, which further clarify and combine the deterministic vs. stochastic and physical vs. analytical methods. Furthermore, massive MIMO channel measurement campaigns are reviewed to summarize new massive MIMO channel characteristics. Recent advances in massive MIMO channel modeling are surveyed. In addition, typical non-predictive massive MIMO channel models are elaborated and compared, i.e., deterministic models and stochastic models, which include correlation-based stochastic model (CBSM), geometry-based stochastic model (GBSM), and beam domain channel model (BDCM). Finally, future challenges in massive MIMO channel modeling are given

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore