54,191 research outputs found

    Ontology-Based MEDLINE Document Classification

    Get PDF
    An increasing and overwhelming amount of biomedical information is available in the research literature mainly in the form of free-text. Biologists need tools that automate their information search and deal with the high volume and ambiguity of free-text. Ontologies can help automatic information processing by providing standard concepts and information about the relationships between concepts. The Medical Subject Headings (MeSH) ontology is already available and used by MEDLINE indexers to annotate the conceptual content of biomedical articles. This paper presents a domain-independent method that uses the MeSH ontology inter-concept relationships to extend the existing MeSH-based representation of MEDLINE documents. The extension method is evaluated within a document triage task organized by the Genomics track of the 2005 Text REtrieval Conference (TREC). Our method for extending the representation of documents leads to an improvement of 17% over a non-extended baseline in terms of normalized utility, the metric defined for the task. The SVMlight software is used to classify documents

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1

    A Pattern Based Approach for Re-engineering Non-Ontological Resources into Ontologies

    Get PDF
    With the goal of speeding up the ontology development process, ontology engineers are starting to reuse as much as possible available ontologies and non-ontological resources such as classification schemes, thesauri, lexicons and folksonomies, that already have some degree of consensus. The reuse of such non-ontological resources necessarily involves their re-engineering into ontologies. Non-ontological resources are highly heterogeneous in their data model and contents: they encode different types of knowledge, and they can be modeled and implemented in different ways. In this paper we present (1) a typology for non-ontological resources, (2) a pattern based approach for re-engineering non-ontological resources into ontologies, and (3) a use case of the proposed approach

    The Space Object Ontology

    Get PDF
    Achieving space domain awareness requires the identification, characterization, and tracking of space objects. Storing and leveraging associated space object data for purposes such as hostile threat assessment, object identification, and collision prediction and avoidance present further challenges. Space objects are characterized according to a variety of parameters including their identifiers, design specifications, components, subsystems, capabilities, vulnerabilities, origins, missions, orbital elements, patterns of life, processes, operational statuses, and associated persons, organizations, or nations. The Space Object Ontology provides a consensus-based realist framework for formulating such characterizations in a computable fashion. Space object data are aligned with classes and relations in the Space Object Ontology and stored in a dynamically updated Resource Description Framework triple store, which can be queried to support space domain awareness and the needs of spacecraft operators. This paper presents the core of the Space Object Ontology, discusses its advantages over other approaches to space object classification, and demonstrates its ability to combine diverse sets of data from multiple sources within an expandable framework. Finally, we show how the ontology provides benefits for enhancing and maintaining longterm space domain awareness

    Towards a Unified Knowledge-Based Approach to Modality Choice

    Get PDF
    This paper advances a unified knowledge-based approach to the process of choosing the most appropriate modality or combination of modalities in multimodal output generation. We propose a Modality Ontology (MO) that models the knowledge needed to support the two most fundamental processes determining modality choice – modality allocation (choosing the modality or set of modalities that can best support a particular type of information) and modality combination (selecting an optimal final combination of modalities). In the proposed ontology we model the main levels which collectively determine the characteristics of each modality and the specific relationships between different modalities that are important for multi-modal meaning making. This ontology aims to support the automatic selection of modalities and combinations of modalities that are suitable to convey the meaning of the intended message
    corecore