39 research outputs found

    Multi-View Representation is What You Need for Point-Cloud Pre-Training

    Full text link
    A promising direction for pre-training 3D point clouds is to leverage the massive amount of data in 2D, whereas the domain gap between 2D and 3D creates a fundamental challenge. This paper proposes a novel approach to point-cloud pre-training that learns 3D representations by leveraging pre-trained 2D networks. Different from the popular practice of predicting 2D features first and then obtaining 3D features through dimensionality lifting, our approach directly uses a 3D network for feature extraction. We train the 3D feature extraction network with the help of the novel 2D knowledge transfer loss, which enforces the 2D projections of the 3D feature to be consistent with the output of pre-trained 2D networks. To prevent the feature from discarding 3D signals, we introduce the multi-view consistency loss that additionally encourages the projected 2D feature representations to capture pixel-wise correspondences across different views. Such correspondences induce 3D geometry and effectively retain 3D features in the projected 2D features. Experimental results demonstrate that our pre-trained model can be successfully transferred to various downstream tasks, including 3D shape classification, part segmentation, 3D object detection, and semantic segmentation, achieving state-of-the-art performance.Comment: 14 pages, 6 figure

    Point2Sequence: Learning the Shape Representation of 3D Point Clouds with an Attention-based Sequence to Sequence Network

    Full text link
    Exploring contextual information in the local region is important for shape understanding and analysis. Existing studies often employ hand-crafted or explicit ways to encode contextual information of local regions. However, it is hard to capture fine-grained contextual information in hand-crafted or explicit manners, such as the correlation between different areas in a local region, which limits the discriminative ability of learned features. To resolve this issue, we propose a novel deep learning model for 3D point clouds, named Point2Sequence, to learn 3D shape features by capturing fine-grained contextual information in a novel implicit way. Point2Sequence employs a novel sequence learning model for point clouds to capture the correlations by aggregating multi-scale areas of each local region with attention. Specifically, Point2Sequence first learns the feature of each area scale in a local region. Then, it captures the correlation between area scales in the process of aggregating all area scales using a recurrent neural network (RNN) based encoder-decoder structure, where an attention mechanism is proposed to highlight the importance of different area scales. Experimental results show that Point2Sequence achieves state-of-the-art performance in shape classification and segmentation tasks.Comment: To be published in AAAI 201

    Spherical Transformer: Adapting Spherical Signal to CNNs

    Full text link
    Convolutional neural networks (CNNs) have been widely used in various vision tasks, e.g. image classification, semantic segmentation, etc. Unfortunately, standard 2D CNNs are not well suited for spherical signals such as panorama images or spherical projections, as the sphere is an unstructured grid. In this paper, we present Spherical Transformer which can transform spherical signals into vectors that can be directly processed by standard CNNs such that many well-designed CNNs architectures can be reused across tasks and datasets by pretraining. To this end, the proposed method first uses locally structured sampling methods such as HEALPix to construct a transformer grid by using the information of spherical points and its adjacent points, and then transforms the spherical signals to the vectors through the grid. By building the Spherical Transformer module, we can use multiple CNN architectures directly. We evaluate our approach on the tasks of spherical MNIST recognition, 3D object classification and omnidirectional image semantic segmentation. For 3D object classification, we further propose a rendering-based projection method to improve the performance and a rotational-equivariant model to improve the anti-rotation ability. Experimental results on three tasks show that our approach achieves superior performance over state-of-the-art methods

    Let Images Give You More:Point Cloud Cross-Modal Training for Shape Analysis

    Full text link
    Although recent point cloud analysis achieves impressive progress, the paradigm of representation learning from a single modality gradually meets its bottleneck. In this work, we take a step towards more discriminative 3D point cloud representation by fully taking advantages of images which inherently contain richer appearance information, e.g., texture, color, and shade. Specifically, this paper introduces a simple but effective point cloud cross-modality training (PointCMT) strategy, which utilizes view-images, i.e., rendered or projected 2D images of the 3D object, to boost point cloud analysis. In practice, to effectively acquire auxiliary knowledge from view images, we develop a teacher-student framework and formulate the cross modal learning as a knowledge distillation problem. PointCMT eliminates the distribution discrepancy between different modalities through novel feature and classifier enhancement criteria and avoids potential negative transfer effectively. Note that PointCMT effectively improves the point-only representation without architecture modification. Sufficient experiments verify significant gains on various datasets using appealing backbones, i.e., equipped with PointCMT, PointNet++ and PointMLP achieve state-of-the-art performance on two benchmarks, i.e., 94.4% and 86.7% accuracy on ModelNet40 and ScanObjectNN, respectively. Code will be made available at https://github.com/ZhanHeshen/PointCMT.Comment: To appear in NIPS202

    PointMCD: Boosting Deep Point Cloud Encoders via Multi-view Cross-modal Distillation for 3D Shape Recognition

    Full text link
    As two fundamental representation modalities of 3D objects, 3D point clouds and multi-view 2D images record shape information from different domains of geometric structures and visual appearances. In the current deep learning era, remarkable progress in processing such two data modalities has been achieved through respectively customizing compatible 3D and 2D network architectures. However, unlike multi-view image-based 2D visual modeling paradigms, which have shown leading performance in several common 3D shape recognition benchmarks, point cloud-based 3D geometric modeling paradigms are still highly limited by insufficient learning capacity, due to the difficulty of extracting discriminative features from irregular geometric signals. In this paper, we explore the possibility of boosting deep 3D point cloud encoders by transferring visual knowledge extracted from deep 2D image encoders under a standard teacher-student distillation workflow. Generally, we propose PointMCD, a unified multi-view cross-modal distillation architecture, including a pretrained deep image encoder as the teacher and a deep point encoder as the student. To perform heterogeneous feature alignment between 2D visual and 3D geometric domains, we further investigate visibility-aware feature projection (VAFP), by which point-wise embeddings are reasonably aggregated into view-specific geometric descriptors. By pair-wisely aligning multi-view visual and geometric descriptors, we can obtain more powerful deep point encoders without exhausting and complicated network modification. Experiments on 3D shape classification, part segmentation, and unsupervised learning strongly validate the effectiveness of our method. The code and data will be publicly available at https://github.com/keeganhk/PointMCD
    corecore