55 research outputs found

    Automated Analysis of Mammograms using Evolutionary Algorithms

    Get PDF
    Breast cancer is the leading cause of death in women in the western countries. The diagnosis of breast cancer at the earlier stage may be particularly important since it provides early treatment, this will decreases the chance of cancer spreading and increase the survival rates. The hard work is the early detection of any tissues abnormal and confirmation of their cancerous natures. In additionally, finding abnormal on very early stage can also affected by poor quality of image and other problems that might show on a mammogram. Mammograms are high resolution x-rays of the breast that are widely used to screen for cancer in women. This report describes the stages of development of a novel representation of Cartesian Genetic programming as part of a computer aided diagnosis system. Specifically, this work is concerned with automated recognition of microcalcifications, one of the key structures used to identify cancer. Results are presented for the application of the proposed algorithm to a number of mammogram sections taken from the Lawrence Livermore National Laboratory Database. The performance of any algorithm such as evolutionary algorithm is only good as the data it is trained on. More specifically, the class represented in the training data must consist of the true examples or else reliable classifications. Considering the difficulties in obtaining a previously constructed database, there is a new database has been construct to avoiding pitfalls and lead on the novel evolutional algorithm Multi-chromosome Cartesian genetic programming the success on classification of microcalcifications in mammograms

    MLN-net: A multi-source medical image segmentation method for clustered microcalcifications using multiple layer normalization

    Full text link
    Accurate segmentation of clustered microcalcifications in mammography is crucial for the diagnosis and treatment of breast cancer. Despite exhibiting expert-level accuracy, recent deep learning advancements in medical image segmentation provide insufficient contribution to practical applications, due to the domain shift resulting from differences in patient postures, individual gland density, and imaging modalities of mammography etc. In this paper, a novel framework named MLN-net, which can accurately segment multi-source images using only single source images, is proposed for clustered microcalcification segmentation. We first propose a source domain image augmentation method to generate multi-source images, leading to improved generalization. And a structure of multiple layer normalization (LN) layers is used to construct the segmentation network, which can be found efficient for clustered microcalcification segmentation in different domains. Additionally, a branch selection strategy is designed for measuring the similarity of the source domain data and the target domain data. To validate the proposed MLN-net, extensive analyses including ablation experiments are performed, comparison of 12 baseline methods. Extensive experiments validate the effectiveness of MLN-net in segmenting clustered microcalcifications from different domains and the its segmentation accuracy surpasses state-of-the-art methods. Code will be available at https://github.com/yezanting/MLN-NET-VERSON1.Comment: 17 pages, 9 figures, 3 table

    A Bottom-Up Review of Image Analysis Methods for Suspicious Region Detection in Mammograms.

    Get PDF
    Breast cancer is one of the most common death causes amongst women all over the world. Early detection of breast cancer plays a critical role in increasing the survival rate. Various imaging modalities, such as mammography, breast MRI, ultrasound and thermography, are used to detect breast cancer. Though there is a considerable success with mammography in biomedical imaging, detecting suspicious areas remains a challenge because, due to the manual examination and variations in shape, size, other mass morphological features, mammography accuracy changes with the density of the breast. Furthermore, going through the analysis of many mammograms per day can be a tedious task for radiologists and practitioners. One of the main objectives of biomedical imaging is to provide radiologists and practitioners with tools to help them identify all suspicious regions in a given image. Computer-aided mass detection in mammograms can serve as a second opinion tool to help radiologists avoid running into oversight errors. The scientific community has made much progress in this topic, and several approaches have been proposed along the way. Following a bottom-up narrative, this paper surveys different scientific methodologies and techniques to detect suspicious regions in mammograms spanning from methods based on low-level image features to the most recent novelties in AI-based approaches. Both theoretical and practical grounds are provided across the paper sections to highlight the pros and cons of different methodologies. The paper's main scope is to let readers embark on a journey through a fully comprehensive description of techniques, strategies and datasets on the topic

    Modular Machine Learning Methods for Computer-Aided Diagnosis of Breast Cancer

    Get PDF
    The purpose of this study was to improve breast cancer diagnosis by reducing the number of benign biopsies performed. To this end, we investigated modular and ensemble systems of machine learning methods for computer-aided diagnosis (CAD) of breast cancer. A modular system partitions the input space into smaller domains, each of which is handled by a local model. An ensemble system uses multiple models for the same cases and combines the models\u27 predictions. Five supervised machine learning techniques (LDA, SVM, BP-ANN, CBR, CART) were trained to predict the biopsy outcome from mammographic findings (BIRADS™) and patient age based on a database of 2258 cases mixed from multiple institutions. The generalization of the models was tested on second set of 2177 cases. Clusters were identified in the database using a priori knowledge and unsupervised learning methods (agglomerative hierarchical clustering followed by K-Means, SOM, AutoClass). The performance of the global models over the clusters was examined and local models were trained for clusters. While some local models were superior to some global models, we were unable to build a modular CAD system that was better than the global BP-ANN model. The ensemble systems based on simplistic combination schemes did not result in significant improvements and more complicated combination schemes were found to be unduly optimistic. One of the most striking results of this dissertation was that CAD systems trained on a mixture of lesion types performed much better on masses than on calcifications. Our study of the institutional effects suggests that models built on cases mixed between institutions may overcome some of the weaknesses of models built on cases from a single institution. It was suggestive that each of the unsupervised methods identified a cluster of younger women with well-circumscribed or obscured, oval-shaped masses that accounted for the majority of the BP-ANN’s recommendations for follow up. From the cluster analysis and the CART models, we determined a simple diagnostic rule that performed comparably to the global BP-ANN. Approximately 98% sensitivity could be maintained while providing approximately 26% specificity. This should be compared to the clinical status quo of 100% sensitivity and 0% specificity on this database of indeterminate cases already referred to biopsy
    • …
    corecore