1,105 research outputs found

    Large kernel spectral and spatial attention networks for hyperspectral image classification.

    Get PDF
    Currently, long-range spectral and spatial dependencies have been widely demonstrated to be essential for hyperspectral image (HSI) classification. Due to the transformer superior ability to exploit long-range representations, the transformer-based methods have exhibited enormous potential. However, existing transformer-based approaches still face two crucial issues that hinder the further performance promotion of HSI classification: 1) treating HSI as 1D sequences neglects spatial properties of HSI, 2) the dependence between spectral and spatial information is not fully considered. To tackle the above problems, a large kernel spectral-spatial attention network (LKSSAN) is proposed to capture the long-range 3D properties of HSI, which is inspired by the visual attention network (VAN). Specifically, a spectral-spatial attention module is first proposed to effectively exploit discriminative 3D spectral-spatial features while keeping the 3D structure of HSI. This module introduces the large kernel attention (LKA) and convolution feed-forward (CFF) to flexibly emphasize, model, and exploit the long-range 3D feature dependencies with lower computational pressure. Finally, the features from the spectral-spatial attention module are fed into the classification module for the optimization of 3D spectral-spatial representation. To verify the effectiveness of the proposed classification method, experiments are executed on four widely used HSI data sets. The experiments demonstrate that LKSSAN is indeed an effective way for long-range 3D feature extraction of HSI

    Spectral-spatial self-attention networks for hyperspectral image classification.

    Get PDF
    This study presents a spectral-spatial self-attention network (SSSAN) for classification of hyperspectral images (HSIs), which can adaptively integrate local features with long-range dependencies related to the pixel to be classified. Specifically, it has two subnetworks. The spatial subnetwork introduces the proposed spatial self-attention module to exploit rich patch-based contextual information related to the center pixel. The spectral subnetwork introduces the proposed spectral self-attention module to exploit the long-range spectral correlation over local spectral features. The extracted spectral and spatial features are then adaptively fused for HSI classification. Experiments conducted on four HSI datasets demonstrate that the proposed network outperforms several state-of-the-art methods

    Application of Convolutional Neural Network in the Segmentation and Classification of High-Resolution Remote Sensing Images

    Get PDF
    Numerous convolution neural networks increase accuracy of classification for remote sensing scene images at the expense of the models space and time sophistication This causes the model to run slowly and prevents the realization of a trade-off among model accuracy and running time The loss of deep characteristics as the network gets deeper makes it impossible to retrieve the key aspects with a sample double branching structure which is bad for classifying remote sensing scene photo

    CMISR: Circular Medical Image Super-Resolution

    Full text link
    Classical methods of medical image super-resolution (MISR) utilize open-loop architecture with implicit under-resolution (UR) unit and explicit super-resolution (SR) unit. The UR unit can always be given, assumed, or estimated, while the SR unit is elaborately designed according to various SR algorithms. The closed-loop feedback mechanism is widely employed in current MISR approaches and can efficiently improve their performance. The feedback mechanism may be divided into two categories: local and global feedback. Therefore, this paper proposes a global feedback-based closed-cycle framework, circular MISR (CMISR), with unambiguous UR and SR elements. Mathematical model and closed-loop equation of CMISR are built. Mathematical proof with Taylor-series approximation indicates that CMISR has zero recovery error in steady-state. In addition, CMISR holds plug-and-play characteristic which can be established on any existing MISR algorithms. Five CMISR algorithms are respectively proposed based on the state-of-the-art open-loop MISR algorithms. Experimental results with three scale factors and on three open medical image datasets show that CMISR is superior to MISR in reconstruction performance and is particularly suited to medical images with strong edges or intense contrast

    SwinV2DNet: Pyramid and Self-Supervision Compounded Feature Learning for Remote Sensing Images Change Detection

    Full text link
    Among the current mainstream change detection networks, transformer is deficient in the ability to capture accurate low-level details, while convolutional neural network (CNN) is wanting in the capacity to understand global information and establish remote spatial relationships. Meanwhile, both of the widely used early fusion and late fusion frameworks are not able to well learn complete change features. Therefore, based on swin transformer V2 (Swin V2) and VGG16, we propose an end-to-end compounded dense network SwinV2DNet to inherit the advantages of both transformer and CNN and overcome the shortcomings of existing networks in feature learning. Firstly, it captures the change relationship features through the densely connected Swin V2 backbone, and provides the low-level pre-changed and post-changed features through a CNN branch. Based on these three change features, we accomplish accurate change detection results. Secondly, combined with transformer and CNN, we propose mixed feature pyramid (MFP) which provides inter-layer interaction information and intra-layer multi-scale information for complete feature learning. MFP is a plug and play module which is experimentally proven to be also effective in other change detection networks. Further more, we impose a self-supervision strategy to guide a new CNN branch, which solves the untrainable problem of the CNN branch and provides the semantic change information for the features of encoder. The state-of-the-art (SOTA) change detection scores and fine-grained change maps were obtained compared with other advanced methods on four commonly used public remote sensing datasets. The code is available at https://github.com/DalongZ/SwinV2DNet

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure
    corecore