2,689 research outputs found

    Learning Task Relatedness in Multi-Task Learning for Images in Context

    Full text link
    Multimedia applications often require concurrent solutions to multiple tasks. These tasks hold clues to each-others solutions, however as these relations can be complex this remains a rarely utilized property. When task relations are explicitly defined based on domain knowledge multi-task learning (MTL) offers such concurrent solutions, while exploiting relatedness between multiple tasks performed over the same dataset. In most cases however, this relatedness is not explicitly defined and the domain expert knowledge that defines it is not available. To address this issue, we introduce Selective Sharing, a method that learns the inter-task relatedness from secondary latent features while the model trains. Using this insight, we can automatically group tasks and allow them to share knowledge in a mutually beneficial way. We support our method with experiments on 5 datasets in classification, regression, and ranking tasks and compare to strong baselines and state-of-the-art approaches showing a consistent improvement in terms of accuracy and parameter counts. In addition, we perform an activation region analysis showing how Selective Sharing affects the learned representation.Comment: To appear in ICMR 2019 (Oral + Lightning Talk + Poster

    Social Fingerprinting: detection of spambot groups through DNA-inspired behavioral modeling

    Full text link
    Spambot detection in online social networks is a long-lasting challenge involving the study and design of detection techniques capable of efficiently identifying ever-evolving spammers. Recently, a new wave of social spambots has emerged, with advanced human-like characteristics that allow them to go undetected even by current state-of-the-art algorithms. In this paper, we show that efficient spambots detection can be achieved via an in-depth analysis of their collective behaviors exploiting the digital DNA technique for modeling the behaviors of social network users. Inspired by its biological counterpart, in the digital DNA representation the behavioral lifetime of a digital account is encoded in a sequence of characters. Then, we define a similarity measure for such digital DNA sequences. We build upon digital DNA and the similarity between groups of users to characterize both genuine accounts and spambots. Leveraging such characterization, we design the Social Fingerprinting technique, which is able to discriminate among spambots and genuine accounts in both a supervised and an unsupervised fashion. We finally evaluate the effectiveness of Social Fingerprinting and we compare it with three state-of-the-art detection algorithms. Among the peculiarities of our approach is the possibility to apply off-the-shelf DNA analysis techniques to study online users behaviors and to efficiently rely on a limited number of lightweight account characteristics

    Quasi-symmetric functions as polynomial functions on Young diagrams

    Full text link
    We determine the most general form of a smooth function on Young diagrams, that is, a polynomial in the interlacing or multirectangular coordinates whose value depends only on the shape of the diagram. We prove that the algebra of such functions is isomorphic to quasi-symmetric functions, and give a noncommutative analog of this result.Comment: 34 pages, 4 figures, version including minor modifications suggested by referee

    Boundaries of Amplituhedra and NMHV Symbol Alphabets at Two Loops

    Full text link
    In this sequel to arXiv:1711.11507 we classify the boundaries of amplituhedra relevant for determining the branch points of general two-loop amplitudes in planar N=4\mathcal{N}=4 super-Yang-Mills theory. We explain the connection to on-shell diagrams, which serves as a useful cross-check. We determine the branch points of all two-loop NMHV amplitudes by solving the Landau equations for the relevant configurations and are led thereby to a conjecture for the symbol alphabets of all such amplitudes.Comment: 42 pages, 6 figures, 8 tables; v2: minor corrections and improvement
    • …
    corecore