1,703 research outputs found

    Predicting Drug-Target Interaction Networks Based on Functional Groups and Biological Features

    Get PDF
    Background: Study of drug-target interaction networks is an important topic for drug development. It is both timeconsuming and costly to determine compound-protein interactions or potential drug-target interactions by experiments alone. As a complement, the in silico prediction methods can provide us with very useful information in a timely manner. Methods/Principal Findings: To realize this, drug compounds are encoded with functional groups and proteins encoded by biological features including biochemical and physicochemical properties. The optimal feature selection procedures are adopted by means of the mRMR (Maximum Relevance Minimum Redundancy) method. Instead of classifying the proteins as a whole family, target proteins are divided into four groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors. Thus, four independent predictors are established using the Nearest Neighbor algorithm as their operation engine, with each to predict the interactions between drugs and one of the four protein groups. As a result, the overall success rates by the jackknife cross-validation tests achieved with the four predictors are 85.48%, 80.78%, 78.49%, and 85.66%, respectively. Conclusion/Significance: Our results indicate that the network prediction system thus established is quite promising an

    Computational Approach to Investigating Key GO Terms and KEGG Pathways Associated with CNV

    Get PDF
    Choroidal neovascularization (CNV) is a severe eye disease that leads to blindness, especially in the elderly population. Various endogenous and exogenous regulatory factors promote its pathogenesis. However, the detailed molecular biological mechanisms of CNV have not been fully revealed. In this study, by using advanced computational tools, a number of key gene ontology (GO) terms and KEGG pathways were selected for CNV. A total of 29 validated genes associated with CNV and 17,639 nonvalidated genes were encoded based on the features derived from the GO terms and KEGG pathways by using the enrichment theory. The widely accepted feature selection method—maximum relevance and minimum redundancy (mRMR)—was applied to analyze and rank the features. An extensive literature review for the top 45 ranking features was conducted to confirm their close associations with CNV. Identifying the molecular biological mechanisms of CNV as described by the GO terms and KEGG pathways may contribute to improving the understanding of the pathogenesis of CNV

    Applying Machine Learning Algorithms for the Analysis of Biological Sequences and Medical Records

    Get PDF
    The modern sequencing technology revolutionizes the genomic research and triggers explosive growth of DNA, RNA, and protein sequences. How to infer the structure and function from biological sequences is a fundamentally important task in genomics and proteomics fields. With the development of statistical and machine learning methods, an integrated and user-friendly tool containing the state-of-the-art data mining methods are needed. Here, we propose SeqFea-Learn, a comprehensive Python pipeline that integrating multiple steps: feature extraction, dimensionality reduction, feature selection, predicting model constructions based on machine learning and deep learning approaches to analyze sequences. We used enhancers, RNA N6- methyladenosine sites and protein-protein interactions datasets to evaluate the validation of the tool. The results show that the tool can effectively perform biological sequence analysis and classification tasks. Applying machine learning algorithms for Electronic medical record (EMR) data analysis is also included in this dissertation. Chronic kidney disease (CKD) is prevalent across the world and well defined by an estimated glomerular filtration rate (eGFR). The progression of kidney disease can be predicted if future eGFR can be accurately estimated using predictive analytics. Thus, I present a prediction model of eGFR that was built using Random Forest regression. The dataset includes demographic, clinical and laboratory information from a regional primary health care clinic. The final model included eGFR, age, gender, body mass index (BMI), obesity, hypertension, and diabetes, which achieved a mean coefficient of determination of 0.95. The estimated eGFRs were used to classify patients into CKD stages with high macro-averaged and micro-averaged metrics

    Prediction of lung tumor types based on protein attributes by machine learning algorithms

    Full text link

    A Systematic Prediction of Multiple Drug-Target Interactions from Chemical, Genomic, and Pharmacological Data

    Get PDF
    In silico prediction of drug-target interactions from heterogeneous biological data can advance our system-level search for drug molecules and therapeutic targets, which efforts have not yet reached full fruition. In this work, we report a systematic approach that efficiently integrates the chemical, genomic, and pharmacological information for drug targeting and discovery on a large scale, based on two powerful methods of Random Forest (RF) and Support Vector Machine (SVM). The performance of the derived models was evaluated and verified with internally five-fold cross-validation and four external independent validations. The optimal models show impressive performance of prediction for drug-target interactions, with a concordance of 82.83%, a sensitivity of 81.33%, and a specificity of 93.62%, respectively. The consistence of the performances of the RF and SVM models demonstrates the reliability and robustness of the obtained models. In addition, the validated models were employed to systematically predict known/unknown drugs and targets involving the enzymes, ion channels, GPCRs, and nuclear receptors, which can be further mapped to functional ontologies such as target-disease associations and target-target interaction networks. This approach is expected to help fill the existing gap between chemical genomics and network pharmacology and thus accelerate the drug discovery processes

    Joint analysis of transcriptional and post- transcriptional brain tumor data: searching for emergent properties of cellular systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in biotechnology offer a fast growing variety of high-throughput data for screening molecular activities of genomic, transcriptional, post-transcriptional and translational observations. However, to date, most computational and algorithmic efforts have been directed at mining data from each of these molecular <it>levels </it>(genomic, transcriptional, etc.) separately. In view of the rapid advances in technology (new generation sequencing, high-throughput proteomics) it is important to address the problem of analyzing these data as a whole, i.e. preserving the emergent properties that appear in the cellular system when all molecular levels are interacting. We analyzed one of the (currently) few datasets that provide both transcriptional and post-transcriptional data of the same samples to investigate the possibility to extract more information, using a joint analysis approach.</p> <p>Results</p> <p>We use Factor Analysis coupled with pre-established knowledge as a theoretical base to achieve this goal. Our intention is to identify structures that contain information from both mRNAs and miRNAs, and that can explain the complexity of the data. Despite the small sample available, we can show that this approach permits identification of meaningful structures, in particular two polycistronic miRNA genes related to transcriptional activity and likely to be relevant in the discrimination between gliosarcomas and other brain tumors.</p> <p>Conclusions</p> <p>This suggests the need to develop methodologies to simultaneously mine information from different levels of biological organization, rather than linking separate analyses performed in parallel.</p

    The application of evolutionary computation towards the characterization and classification of urothelium cell cultures

    Get PDF
    This thesis presents a novel method for classifying and characterizing urothelial cell cultures. A system of cell tracking employing computer vision techniques was applied to a one day long time-lapse videos of replicate normal human uroepithelial cell cultures exposed to different concentrations of adenosine triphosphate (ATP) and a selective purinergic P2X antagonist (PPADS) as inhibitor. Subsequent analysis following feature extraction on both cell culture and single-cell demonstrated the ability of the approach to successfully classify the modulated classes of cells using evolutionary algorithms. Specifically, a Cartesian Genetic Program (CGP) network was evolved that identified average migration speed, in-contact angular velocity, cohesivity and average cell clump size as the principal features contributing to the cell class separation. This approach provides a non-biased insight into modulated cell class behaviours

    Investigation into the role of sequence-driven-features and amino acid indices for the prediction of structural classes of proteins

    Get PDF
    The work undertaken within this thesis is towards the development of a representative set of sequence driven features for the prediction of structural classes of proteins. Proteins are biological molecules that make living things function, to determine the function of a protein the structure must be known because the structure dictates its physical capabilities. A protein is generally classified into one of the four main structural classes, namely all-α, all-ÎČ, α + ÎČ or α / ÎČ, which are based on the arrangements and gross content of the secondary structure elements. Current methods manually assign the structural classes to the protein by manual inspection, which is a slow process. In order to address the problem, this thesis is concerned with the development of automated prediction of structural classes of proteins and extraction of a small but robust set of sequence driven features by using the amino acid indices. The first main study undertook a comprehensive analysis of the largest collection of sequence driven features, which includes an existing set of 1479 descriptor values grouped by ten different feature groups. The results show that composition based feature groups are the most representative towards the four main structural classes, achieving a predictive accuracy of 63.87%. This finding led to the second main study, development of the generalised amino acid composition method (GAAC), where amino acid index values are used to weigh corresponding amino acids. GAAC method results in a higher accuracy of 68.02%. The third study was to refine the amino acid indices database, which resulted in the highest accuracy of 75.52%. The main contributions from this thesis are the development of four computationally extracted sequence driven feature-sets based on the underused amino acid indices. Two of these methods, GAAC and the hybrid method have shown improvement over the usage of traditional sequence driven features in the context of smaller and refined feature sizes and classification accuracy. The development of six non-redundant novel sets of the amino acid indices dataset, of which each are more representative than the original database. Finally, the construction of two large 25% and 40% homology datasets consisting over 5000 and 7000 protein samples, respectively. A public webserver has been developed located at http://www.generalised-protein-sequence-features.com, which allows biologists and bioinformaticians to extract GAAC sequence driven features from any inputted protein sequence
    • 

    corecore