760 research outputs found

    Value of Mineralogical Monitoring for the Mining and Minerals Industry In memory of Prof. Dr. Herbert Pöllmann

    Get PDF
    This Special Issue, focusing on the value of mineralogical monitoring for the mining and minerals industry, should include detailed investigations and characterizations of minerals and ores of the following fields for ore and process control: Lithium ores—determination of lithium contents by XRD methods; Copper ores and their different mineralogy; Nickel lateritic ores; Iron ores and sinter; Bauxite and bauxite overburden; Heavy mineral sands. The value of quantitative mineralogical analysis, mainly by XRD methods, combined with other techniques for the evaluation of typical metal ores and other important minerals, will be shown and demonstrated for different minerals. The different steps of mineral processing and metal contents bound to different minerals will be included. Additionally, some processing steps, mineral enrichments, and optimization of mineral determinations using XRD will be demonstrated. Statistical methods for the treatment of a large set of XRD patterns of ores and mineral concentrates, as well as their value for the characterization of mineral concentrates and ores, will be demonstrated. Determinations of metal concentrations in minerals by different methods will be included, as well as the direct prediction of process parameters from raw XRD data

    Application of supervised machine-learning methods for attesting provenance in catalan traditional pottery industry

    Get PDF
    The traditional pottery industry was an important activity in Catalonia (NE Spain) up to the 20th century. However, nowadays only few workshops persist in small villages were the activity is promoted as a touristic attraction. The preservation and promotion of traditional pottery in Catalonia is part of an ongoing strategy of tourism diversification that is revitalizing the sector. The production of authenticable local pottery handicrafts aims at attracting cultivated and high-purchasing power tourists. The present paper inspects several approaches to set up a scientific protocol based on the chemical composition of both raw materials and pottery. These could be used to develop a seal of quality and provenance to regulate the sector. Six Catalan villages with a renowned tradition of local pottery production have been selected. The chemical composition of their clays and the corresponding fired products has been obtained by Energy dispersive X-ray fluorescence (EDXRF). Using the obtained geochemical dataset, a number of unsupervised and supervised machine learning methods have been applied to test their applicability to define geochemical fingerprints that could allow inter-site discrimination. The unsupervised approach fails to distinguish samples from different provenances. These methods are only roughly able to divide the different provenances in two large groups defined by their different SiO2 and CaCO3 concentrations. In contrast, almost all the tested supervised methods allow inter-site discrimination with accuracy levels above 80%, and accuracies above 85% were obtained using a meta-model combining all the predictive supervised methods. The obtained results can be taken as encouraging and demonstrative of the potential of the supervised approach as a way to define geochemical fingerprints to track or attest the provenance of samples

    RamanNet: A generalized neural network architecture for Raman Spectrum Analysis

    Full text link
    Raman spectroscopy provides a vibrational profile of the molecules and thus can be used to uniquely identify different kind of materials. This sort of fingerprinting molecules has thus led to widespread application of Raman spectrum in various fields like medical dignostics, forensics, mineralogy, bacteriology and virology etc. Despite the recent rise in Raman spectra data volume, there has not been any significant effort in developing generalized machine learning methods for Raman spectra analysis. We examine, experiment and evaluate existing methods and conjecture that neither current sequential models nor traditional machine learning models are satisfactorily sufficient to analyze Raman spectra. Both has their perks and pitfalls, therefore we attempt to mix the best of both worlds and propose a novel network architecture RamanNet. RamanNet is immune to invariance property in CNN and at the same time better than traditional machine learning models for the inclusion of sparse connectivity. Our experiments on 4 public datasets demonstrate superior performance over the much complex state-of-the-art methods and thus RamanNet has the potential to become the defacto standard in Raman spectra data analysi

    Mineral identification using data-mining in hyperspectral infrared imagery

    Get PDF
    Les applications de l’imagerie infrarouge dans le domaine de la géologie sont principalement des applications hyperspectrales. Elles permettent entre autre l’identification minérale, la cartographie, ainsi que l’estimation de la portée. Le plus souvent, ces acquisitions sont réalisées in-situ soit à l’aide de capteurs aéroportés, soit à l’aide de dispositifs portatifs. La découverte de minéraux indicateurs a permis d’améliorer grandement l’exploration minérale. Ceci est en partie dû à l’utilisation d’instruments portatifs. Dans ce contexte le développement de systèmes automatisés permettrait d’augmenter à la fois la qualité de l’exploration et la précision de la détection des indicateurs. C’est dans ce cadre que s’inscrit le travail mené dans ce doctorat. Le sujet consistait en l’utilisation de méthodes d’apprentissage automatique appliquées à l’analyse (au traitement) d’images hyperspectrales prises dans les longueurs d’onde infrarouge. L’objectif recherché étant l’identification de grains minéraux de petites tailles utilisés comme indicateurs minéral -ogiques. Une application potentielle de cette recherche serait le développement d’un outil logiciel d’assistance pour l’analyse des échantillons lors de l’exploration minérale. Les expériences ont été menées en laboratoire dans la gamme relative à l’infrarouge thermique (Long Wave InfraRed, LWIR) de 7.7m à 11.8 m. Ces essais ont permis de proposer une méthode pour calculer l’annulation du continuum. La méthode utilisée lors de ces essais utilise la factorisation matricielle non négative (NMF). En utlisant une factorisation du premier ordre on peut déduire le rayonnement de pénétration, lequel peut ensuite être comparé et analysé par rapport à d’autres méthodes plus communes. L’analyse des résultats spectraux en comparaison avec plusieurs bibliothèques existantes de données a permis de mettre en évidence la suppression du continuum. Les expérience ayant menés à ce résultat ont été conduites en utilisant une plaque Infragold ainsi qu’un objectif macro LWIR. L’identification automatique de grains de différents matériaux tels que la pyrope, l’olivine et le quartz a commencé. Lors d’une phase de comparaison entre des approches supervisées et non supervisées, cette dernière s’est montrée plus approprié en raison du comportement indépendant par rapport à l’étape d’entraînement. Afin de confirmer la qualité de ces résultats quatre expériences ont été menées. Lors d’une première expérience deux algorithmes ont été évalués pour application de regroupements en utilisant l’approche FCC (False Colour Composite). Cet essai a permis d’observer une vitesse de convergence, jusqu’a vingt fois plus rapide, ainsi qu’une efficacité significativement accrue concernant l’identification en comparaison des résultats de la littérature. Cependant des essais effectués sur des données LWIR ont montré un manque de prédiction de la surface du grain lorsque les grains étaient irréguliers avec présence d’agrégats minéraux. La seconde expérience a consisté, en une analyse quantitaive comparative entre deux bases de données de Ground Truth (GT), nommée rigid-GT et observed-GT (rigide-GT: étiquet manuel de la région, observée-GT:étiquetage manuel les pixels). La précision des résultats était 1.5 fois meilleur lorsque l’on a utlisé la base de données observed-GT que rigid-GT. Pour les deux dernières epxérience, des données venant d’un MEB (Microscope Électronique à Balayage) ainsi que d’un microscopie à fluorescence (XRF) ont été ajoutées. Ces données ont permis d’introduire des informations relatives tant aux agrégats minéraux qu’à la surface des grains. Les résultats ont été comparés par des techniques d’identification automatique des minéraux, utilisant ArcGIS. Cette dernière a montré une performance prometteuse quand à l’identification automatique et à aussi été utilisée pour la GT de validation. Dans l’ensemble, les quatre méthodes de cette thèse représentent des méthodologies bénéfiques pour l’identification des minéraux. Ces méthodes présentent l’avantage d’être non-destructives, relativement précises et d’avoir un faible coût en temps calcul ce qui pourrait les qualifier pour être utilisée dans des conditions de laboratoire ou sur le terrain.The geological applications of hyperspectral infrared imagery mainly consist in mineral identification, mapping, airborne or portable instruments, and core logging. Finding the mineral indicators offer considerable benefits in terms of mineralogy and mineral exploration which usually involves application of portable instrument and core logging. Moreover, faster and more mechanized systems development increases the precision of identifying mineral indicators and avoid any possible mis-classification. Therefore, the objective of this thesis was to create a tool to using hyperspectral infrared imagery and process the data through image analysis and machine learning methods to identify small size mineral grains used as mineral indicators. This system would be applied for different circumstances to provide an assistant for geological analysis and mineralogy exploration. The experiments were conducted in laboratory conditions in the long-wave infrared (7.7μm to 11.8μm - LWIR), with a LWIR-macro lens (to improve spatial resolution), an Infragold plate, and a heating source. The process began with a method to calculate the continuum removal. The approach is the application of Non-negative Matrix Factorization (NMF) to extract Rank-1 NMF and estimate the down-welling radiance and then compare it with other conventional methods. The results indicate successful suppression of the continuum from the spectra and enable the spectra to be compared with spectral libraries. Afterwards, to have an automated system, supervised and unsupervised approaches have been tested for identification of pyrope, olivine and quartz grains. The results indicated that the unsupervised approach was more suitable due to independent behavior against training stage. Once these results obtained, two algorithms were tested to create False Color Composites (FCC) applying a clustering approach. The results of this comparison indicate significant computational efficiency (more than 20 times faster) and promising performance for mineral identification. Finally, the reliability of the automated LWIR hyperspectral infrared mineral identification has been tested and the difficulty for identification of the irregular grain’s surface along with the mineral aggregates has been verified. The results were compared to two different Ground Truth(GT) (i.e. rigid-GT and observed-GT) for quantitative calculation. Observed-GT increased the accuracy up to 1.5 times than rigid-GT. The samples were also examined by Micro X-ray Fluorescence (XRF) and Scanning Electron Microscope (SEM) in order to retrieve information for the mineral aggregates and the grain’s surface (biotite, epidote, goethite, diopside, smithsonite, tourmaline, kyanite, scheelite, pyrope, olivine, and quartz). The results of XRF imagery compared with automatic mineral identification techniques, using ArcGIS, and represented a promising performance for automatic identification and have been used for GT validation. In overall, the four methods (i.e. 1.Continuum removal methods; 2. Classification or clustering methods for mineral identification; 3. Two algorithms for clustering of mineral spectra; 4. Reliability verification) in this thesis represent beneficial methodologies to identify minerals. These methods have the advantages to be a non-destructive, relatively accurate and have low computational complexity that might be used to identify and assess mineral grains in the laboratory conditions or in the field

    Multispectral and Hyperspectral Remote Sensing Data for Mineral Exploration and Environmental Monitoring of Mined Areas

    Get PDF
    In recent decades, remote sensing technology has been incorporated in numerous mineral exploration projects in metallogenic provinces around the world. Multispectral and hyperspectral sensors play a significant role in affording unique data for mineral exploration and environmental hazard monitoring. This book covers the advances of remote sensing data processing algorithms in mineral exploration, and the technology can be used in monitoring and decision-making in relation to environmental mining hazard. This book presents state-of-the-art approaches on recent remote sensing and GIS-based mineral prospectivity modeling, offering excellent information to professional earth scientists, researchers, mineral exploration communities and mining companies

    Applying Machine Learning To Asteroid Classification Utilizing Spectroscopically Derived Spectrophotometry

    Get PDF
    Taxonomic studies of asteroids have been ongoing for more than fifty years without a clear understanding of the class parameters. The current method of Principal Component Analysis is computationally expensive and leaves ambiguous results. In this study, I selected the machine learning algorithm, k-Nearest Neighbor in combination with the current Bus-DeMeo (DeMeo, et al. 2009) taxonomic classification schema to test if machine learning can take the place of Principal Component Analysis. Using a dataset of spectrophotometric color indices derived from combined visible and near-infrared (NIR) observations and paired with Bus-DeMeo taxonomic class, I created a training dataset for the model to learn. The results support the visible wavelength region as more diagnostic of spectral slope and the NIR wavelength region as more diagnostic for surface mineralogy. The overall accuracy scores (\u3e80%) of the machine learning test dataset validate the methodology, but fall short of the threshold necessary to replace current methods of classification (\u3e95%). The overall robustness of the Bus-DeMeo taxonomy is corroborated through the relatively similar grouping structure between the C-, S-, and X-complexes in both wavelength ranges, suggesting an overall relationship between slope and qualities present across multiple wavelength regimes. This is possibly due to spectral features being closely tied to surface mineralogy and spectral reddening of the slope believed to be tied to the effects of space weathering

    Deep Learning Approach for Raman Spectroscopy

    Get PDF
    Raman spectroscopy is a widely used technique for organic and inorganic chemical material identification. Throughout the last century, major improvements in lasers, spectrometers, detectors, and holographic optical components have uplifted Raman spectroscopy as an effective device for a variety of different applications including fundamental chemical and material research, medical diagnostics, bio-science, in-situ process monitoring and planetary investigations. Undoubtedly, mathematical data analysis has been playing a vital role to speed up the migration of Raman spectroscopy to explore different applications. It supports researchers to customize spectral interpretation and overcome the limitations of the physical components in the Raman instrument. However, large, and complex datasets, interferences from instrumentation noise and sample properties which mask the true features of samples still make Raman spectroscopy as a challenging tool. Deep learning is a powerful machine learning strategy to build exploratory and predictive models from large raw datasets and has gained more attention in chemical research over recent years. This chapter demonstrates the application of deep learning techniques for Raman signal-extraction, feature-learning and modelling complex relationships as a support to researchers to overcome the challenges in Raman based chemical analysis
    • …
    corecore