347 research outputs found

    Complexity Analysis of Surface Electromyography for Assessing the Myoelectric Manifestation of Muscle Fatigue: A Review

    Get PDF
    The surface electromyography (sEMG) records the electrical activity of muscle fibers during contraction: one of its uses is to assess changes taking place within muscles in the course of a fatiguing contraction to provide insights into our understanding of muscle fatigue in training protocols and rehabilitation medicine. Until recently, these myoelectric manifestations of muscle fatigue (MMF) have been assessed essentially by linear sEMG analyses. However, sEMG shows a complex behavior, due to many concurrent factors. Therefore, in the last years, complexity-based methods have been tentatively applied to the sEMG signal to better individuate the MMF onset during sustained contractions. In this review, after describing concisely the traditional linear methods employed to assess MMF we present the complexity methods used for sEMG analysis based on an extensive literature search. We show that some of these indices, like those derived from recurrence plots, from entropy or fractal analysis, can detect MMF efficiently. However, we also show that more work remains to be done to compare the complexity indices in terms of reliability and sensibility; to optimize the choice of embedding dimension, time delay and threshold distance in reconstructing the phase space; and to elucidate the relationship between complexity estimators and the physiologic phenomena underlying the onset of MMF in exercising muscles

    Complexity analysis of surface electromyography for assessing the myoelectric manifestation of muscle fatigue: A review

    Get PDF
    The surface electromyography (sEMG) records the electrical activity of muscle fibers during contraction: one of its uses is to assess changes taking place within muscles in the course of a fatiguing contraction to provide insights into our understanding of muscle fatigue in training protocols and rehabilitation medicine. Until recently, these myoelectric manifestations of muscle fatigue (MMF) have been assessed essentially by linear sEMG analyses. However, sEMG shows a complex behavior, due to many concurrent factors. Therefore, in the last years, complexity-based methods have been tentatively applied to the sEMG signal to better individuate the MMF onset during sustained contractions. In this review, after describing concisely the traditional linear methods employed to assess MMF we present the complexity methods used for sEMG analysis based on an extensive literature search. We show that some of these indices, like those derived from recurrence plots, from entropy or fractal analysis, can detect MMF efficiently. However, we also show that more work remains to be done to compare the complexity indices in terms of reliability and sensibility; to optimize the choice of embedding dimension, time delay and threshold distance in reconstructing the phase space; and to elucidate the relationship between complexity estimators and the physiologic phenomena underlying the onset of MMF in exercising muscles

    Surface EMG and muscle fatigue: multi-channel approaches to the study of myoelectric manifestations of muscle fatigue

    Get PDF
    In a broad view, fatigue is used to indicate a degree of weariness. On a muscular level, fatigue posits the reduced capacity of muscle fibres to produce force, even in the presence of motor neuron excitation via either spinal mechanisms or electric pulses applied externally. Prior to decreased force, when sustaining physically demanding tasks, alterations in the muscle electrical properties take place. These alterations, termed myoelectric manifestation of fatigue, can be assessed non-invasively with a pair of surface electrodes positioned appropriately on the target muscle; traditional approach. A relatively more recent approach consists of the use of multiple electrodes. This multi-channel approach provides access to a set of physiologically relevant variables on the global muscle level or on the level of single motor units, opening new fronts for the study of muscle fatigue; it allows for: (i) a more precise quantification of the propagation velocity, a physiological variable of marked interest to the study of fatigue; (ii) the assessment of regional, myoelectric manifestations of fatigue; (iii) the analysis of single motor units, with the possibility to obtain information about motor unit control and fibre membrane changes. This review provides a methodological account on the multi-channel approach for the study of myoelectric manifestation of fatigue and on the experimental conditions to which it applies, as well as examples of their current applications

    Introduction to this Special Issue: Intelligent Data Analysis on Electromyography and Electroneurography

    Get PDF
    Computer-aided electromyography (EMG) and elec- troneurography (ENG) have become indispensable tools in the daily activities of neurophysiology laboratories in facilitating quantitative analysis and decision making in clinical neurophysiology, rehabilitation, sports medicine, and studies of human physiology. These tools form the basis of a new era in the practice of neurophysiology facilitating the: (i) Standardization . Diagnoses obtained with similar criteria in different laboratories can be veri- fied. (ii) Sensitivity . Neurophysiological findings in a particular subject under investigation may be compared with a database of normal values to determine whether abnormality exists or not. (iii) Specificity . Findings may be compared with databases derived from patients with known diseases, to evaluate whether they fit a specific diagnosis. (iv) Equivalence . Results from serial examin- ations on the same patient may be compared to decide whether there is evidence of disease progression or of response to treatment. Also, findings obtained from dif- ferent quantitative methods may be contrasted to deter- mine which are most sensitive and specific. Different methodologies have been developed in com- puter-aided EMG and ENG analysis ranging from simple quantitative measures of the recorded potentials, to more complex knowledge-based and neural network systems that enable the automated assessment of neuromuscular disorders. However, the need still exists for the further advancement and standardization of these method- ologies, especially nowadays with the emerging health telematics technologies which will enable their wider application in the neurophysiological laboratory. The main objective of this Special Issue of Medical Engin- eering & Physics is to provide a snapshot of current activities and methodologies in intelligent data analysis in peripheral neurophysiology. A total of 12 papers are published in this Special Issue under the following topics: Motor Unit Action Potential (MUAP) Analysis, Surface EMG (SEMG) Analysis, Electroneurography, and Decision Systems. In this intro- duction, the papers are briefly introduced, following a brief review of the major achievements in quantitative electromyography and electroneuropathy

    Evaluation of performance fatigability through surface EMG in health and muscle disease: state of the art

    Get PDF
    In literature, it is commonly reported that the progress of performance fatigability may be indirectly assessed through the changes in the features of the surface electromyogram (sEMG) signal. In particular, during isometric constant force contractions, changes in the sEMG signal are caused by several physiological factors, such as a decay in muscle fibers conduction velocity (CV), an increase of the degree of synchronization between the firing times of simultaneously active motor units (MUs), by the central nervous system, and a reduction of the recruitment threshold and a modulation of MUs firing rate. Amplitude and spectral parameters may be used to characterize the global contributions to performance fatigability, such as MU control properties and fiber membrane properties, or central and peripheral factors, respectively. In addition, being CV a physiological parameter, its estimation is of marked interest to the study of fatigue both in physiological and in presence of neuromuscular diseases
    • …
    corecore