242 research outputs found

    Survey analysis for optimization algorithms applied to electroencephalogram

    Get PDF
    This paper presents a survey for optimization approaches that analyze and classify Electroencephalogram (EEG) signals. The automatic analysis of EEG presents a significant challenge due to the high-dimensional data volume. Optimization algorithms seek to achieve better accuracy by selecting practical features and reducing unwanted features. Forty-seven reputable research papers are provided in this work, emphasizing the developed and executed techniques divided into seven groups based on the applied optimization algorithm particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), grey wolf optimizer (GWO), Bat, Firefly, and other optimizer approaches). The main measures to analyze this paper are accuracy, precision, recall, and F1-score assessment. Several datasets have been utilized in the included papers like EEG Bonn University, CHB-MIT, electrocardiography (ECG) dataset, and other datasets. The results have proven that the PSO and GWO algorithms have achieved the highest accuracy rate of around 99% compared with other techniques

    Application of biosignal-driven intelligent systems for multifunction prosthesis control

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Prosthetic devices aim to provide an artificial alternative to missing limbs. The controller for such devices is usually driven by the biosignals generated by the human body, particularly Electromyogram (EMG) or Electroencephalogram (EEG) signals. Such a controller utilizes a pattern recognition approach to classify the EMG signal recorded from the human muscles or the EEG signal from the brain. The aim of this thesis is to improve the EMG and EEG pattern classification accuracy. Due to the fact that the success of pattern recognition based biosignal driven systems highly depends on the quality of extracted features, a number of novel, robust, hybrid and innovative methods are proposed to achieve better performance. These methods are developed to effectively tackle many of the limitations of existing systems, in particular feature representation and dimensionality reduction. A set of knowledge extraction methods that can accurately and rapidly identify the most important attributes for classifying the arm movements are formulated. This is accomplished through the following: 1. Developing a new feature extraction technique that can identify the most important features from the high-dimensional time-frequency representation of the multichannel EMG and EEG signals. For this task, an information content estimation method using fuzzy entropies and fuzzy mutual information is proposed to identify the optimal wravelet packet transform decomposition for classification. 2. Developing a powerful variable (feature or channel) selection paradigm to improve the performance of multi-channel EMG and EEG driven systems. This will eventually lead to the development of a combined channel and feature selection technique as one possible scheme for dimensionality reduction. Two novel feature selection methods are developed under this scheme utilizing the ant colony arid differential evolution optimization techniques. The differential evolution optimization technique is further modified in a novel attempt in employing a float optimizer for the combinatorial task of feature selection, proving powerful performance by both methods. 3. Developing two feature projection techniques that extract a small subset of highly informative discriminant features, thus acting as an alternative scheme for dimensionality reduction. The two methods represent novel variations to fuzzy discriminant analysis based projection techniques. In addition, an extension to the non-linear discriminant analysis is proposed based on a mixture of differential evolution and fuzzy discriminant analysis. The testing and verification process of the proposed methods on different EMG and EEG datasets provides very encouraging results

    An improved EEG pattern classification system based on dimensionality reduction and classifier fusion

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Analysis of brain electrical activities (Electroencephalography, EEG) presents a rich source of information that helps in the advancement of affordable and effective biomedical applications such as psychotropic drug research, sleep studies, seizure detection and brain computer interface (BCI). Interpretation and understanding of EEG signal will provide clinicians and physicians with useful information for disease diagnosis and monitoring biological activities. It will also help in creating a new way of communication through brain waves. This thesis aims to investigate new algorithms for improving pattern recognition systems in two main EEG-based applications. The first application represents a simple Brain Computer Interface (BCI) based on imagined motor tasks, whilst the second one represents an automatic sleep scoring system in intensive care unit. BCI system in general aims to create a lion-muscular link between brain and external devices, thus providing a new control scheme that can most benefit the extremely immobilised persons. This link is created by utilizing pattern recognition approach to interpret EEG into device commands. The commands can then be used to control wheelchairs, computers or any other equipment. The second application relates to creating an automatic scoring system through interpreting certain properties of several biomedical signals. Traditionally, sleep specialists record and analyse brain signal using electroencephalogram (EEG), muscle tone (EMG), eye movement (EOG), and other biomedical signals to detect five sleep stages: Rapid Eye Movement (REM), stage 1,... to stage 4. Acquired signals are then scored based on 30 seconds intervals that require manually inspecting one segment at a time for certain properties to interpret sleep stages. The process is time consuming and demands competence. It is thought that an automatic scoring system mimicking sleep expert rules will speed up the process and reduce the cost. Practicality of any EEG-based system depends upon accuracy and speed. The more accurate and faster classification systems are, the better will be the chance to integrate them in wider range of applications. Thus, the performance of the previous systems is further enhanced using improved feature selection, projection and classification algorithms. As processing EEG signals requires dealing with multi-dimensional data, there is a need to minimize the dimensionality in order to achieve acceptable performance with less computational cost. The first possible candidate for dimensionality reduction is employed using channel feature selection approach. Four novel feature selection methods are developed utilizing genetic algorithms, ant colony, particle swarm and differential evolution optimization. The methods provide fast and accurate implementation in selecting the most informative features/channels that best represent mental tasks. Thus, computational burden of the classifier is kept as light as possible by removing irrelevant and highly redundant features. As an alternative to dimensionality reduction approach, a novel feature projection method is also introduced. The method maps the original feature set into a small informative subset of features that can best discriminate between the different class. Unlike most existing methods based on discriminant analysis, the proposed method considers fuzzy nature of input measurements in discovering the local manifold structure. It is able to find a projection that can maximize the margin between data points from different classes at each local area while considering the fuzzy nature. In classification phase, a number of improvements to traditional nearest neighbour classifier (kNN) are introduced. The improvements address kNN weighting scheme limitations. The traditional kNN does not take into account class distribution, importance of each feature, contribution of each neighbour, and the number of instances for each class. The proposed kNN variants are based on improved distance measure and weight optimization using differential evolution. Differential evolution optimizer is utilized to enhance kNN performance through optimizing the metric weights of features, neighbours and classes. Additionally, a Fuzzy kNN variant has also been developed to favour classification of certain classes. This variant may find use in medical examination. An alternative classifier fusion method is introduced that aims to create a set of diverse neural network ensemble. The diversity is enhanced by altering the target output of each network to create a certain amount of bias towards each class. This enables the construction of a set of neural network classifiers that complement each other

    An Enhanced Automated Epileptic Seizure Detection Using ANFIS, FFA and EPSO Algorithms

    Get PDF
    Objectives: Electroencephalogram (EEG) signal   gives   a   viable perception about the neurological action of the human brain that aids the detection of epilepsy. The objective of this study is to build an accurate automated hybrid model for epileptic seizure detection. Methods: This work develops a computer-aided diagnosis (CAD) machine learning model which can spontaneously classify pre-ictal and ictal EEG signals. In the proposed method two most effective nature inspired algorithms, Firefly algorithm (FFA) and Efficient Particle Swarm Optimization (EPSO) are used to determine the optimum parameters of Adaptive Neuro Fuzzy Inference System (ANFIS) network. Results: Compared to the FFA and EPSO algorithm separately, the composite (ANFIS+FFA+EPSO) optimization algorithm outperforms in all respects. The proposed technique achieved accuracy, specificity, and sensitivity of 99.87%, 98.71% and 100% respectively. Conclusion: The ANFIS-FFA-EPSO method is able to enhance the seizure detection outcomes for demand forecast in hospital

    Electroencephalogram Signalling diagnosis using Softcomputing

    Get PDF
    The two most frightening things for the researchers in clinical signal processing and computer aided diagnosis are noise and relativity of human judgment. The researchers made effort to overcome these two challenges by using various soft computing approaches. In this article the present benefits of these approaches in the accomplishment of the analysis of electroencephalogram (EEG) is acknowledge. There is also the presentation of the significance of several trend and prospects of further softcomputing methods that can produce better results in signal processing of EEG. Medical experts apply the different softcomputing techniques for disease diagnoses and decision making systems performed on brain actions and modeling of neural impulses of the human encephalon

    Detection of Epileptic Seizures on EEG Signals Using ANFIS Classifier, Autoencoders and Fuzzy Entropies

    Get PDF
    Epileptic seizures are one of the most crucial neurological disorders, and their early diagnosis will help the clinicians to provide accurate treatment for the patients. The electroencephalogram (EEG) signals are widely used for epileptic seizures detection, which provides specialists with substantial information about the functioning of the brain. In this paper, a novel diagnostic procedure using fuzzy theory and deep learning techniques is introduced. The proposed method is evaluated on the Bonn University dataset with six classification combinations and also on the Freiburg dataset. The tunable- Q wavelet transform (TQWT) is employed to decompose the EEG signals into different sub-bands. In the feature extraction step, 13 different fuzzy entropies are calculated from different sub-bands of TQWT, and their computational complexities are calculated to help researchers choose the best set for various tasks. In the following, an autoencoder (AE) with six layers is employed for dimensionality reduction. Finally, the standard adaptive neuro-fuzzy inference system (ANFIS), and also its variants with grasshopper optimization algorithm (ANFIS-GOA), particle swarm optimization (ANFIS-PSO), and breeding swarm optimization (ANFIS-BS) methods are used for classification. Using our proposed method, ANFIS-BS method has obtained an accuracy of 99.7

    Artificial immune system and particle swarm optimization for electroencephalogram based epileptic seizure classification

    Get PDF
    Automated analysis of brain activity from electroencephalogram (EEG) has indispensable applications in many fields such as epilepsy research. This research has studied the abilities of negative selection and clonal selection in artificial immune system (AIS) and particle swarm optimization (PSO) to produce different reliable and efficient methods for EEG-based epileptic seizure recognition which have not yet been explored. Initially, an optimization-based classification model was proposed to describe an individual use of clonal selection and PSO to build nearest centroid classifier for EEG signals. Next, two hybrid optimization-based negative selection models were developed to investigate the integration of the AIS-based techniques and negative selection with PSO from the perspective of classification and detection. In these models, a set of detectors was created by negative selection as self-tolerant and their quality was improved towards non-self using clonal selection or PSO. The models included a mechanism to maintain the diversity and generality among the detectors. The detectors were produced in the classification model for each class, while the detection model generated the detectors only for the abnormal class. These hybrid models differ from each other in hybridization configuration, solution representation and objective function. The three proposed models were abstracted into innovative methods by applying clonal selection and PSO for optimization, namely clonal selection classification algorithm (CSCA), particle swarm classification algorithm (PSCA), clonal negative selection classification algorithm (CNSCA), swarm negative selection classification algorithm (SNSCA), clonal negative selection detection algorithm (CNSDA) and swarm negative selection detection algorithm (SNSDA). These methods were evaluated on EEG data using common measures in medical diagnosis. The findings demonstrated that the methods can efficiently achieve a reliable recognition of epileptic activity in EEG signals. Although CNSCA gave the best performance, CNSDA and SNSDA are preferred due to their efficiency in time and space. A comparison with other methods in the literature showed the competitiveness of the proposed methods

    Classification of EEG Signal by Using Optimized Quantum Neural Network

    Get PDF
    In recent years the algorithms of machine learning was used for brain signals identifing which is a useful technique for diagnosing diseases like Alzheimer's and epilepsy. In this paper, the Electroencephalogram (EEG) signals are classified using an optimized Quantum neural network (QNN) after normalizing these signals, wavelet transform (WT) and the independent component analysis (ICA), were utilized for feature extraction.  These algorithms used to reduces the dimensions of the data, which is an input to the optimized QNN for the purpose of performing the classification process after the feature extraction process. This research uses an optimized QNN, a form of feedforward neural network (FFNN), to recognize (EEG) signals. The Particle swarm optimization (PSO) algorithm was used to optimize the quantum neural network, which improved the training process of the system's performance. The optimized (QNN) provided us with somewhat faster and more realistic results. According to simulation results, the total classification for (ICA) is 82.4 percent, while the total classification for (WT) is 78.43 percent; from these results, using the ICA for feature extraction is better than using WT

    Design of Gm-C wavelet filter for on-line epileptic EEG detection

    Get PDF
    Copyright © 2019 The Institute of Electronics, Information and Communication EngineersAnalog filter implementation of continuous wavelet transform is considered as a promising technique for on-line spike detection applied in wearable electroencephalogram system. This Letter proposes a novel method to construct analog wavelet base for analog wavelet filter design, in which the mathematical approximation model in frequency domain is built as an optimization problem and the genetic algorithm is used to find the global optimum resolution. Also, the Gm-C filter structure based on LC ladder simulation is employed to synthesize the obtained analog wavelet base. The Marr wavelet filter is designed as an example using SMIC 1V 0.35μm CMOS technology. Simulation results show that the proposed method can give a stable analog wavelet filter with higher approximation accuracy and excellent circuit performance, which is well suited for the design of low-frequency low-power spike detector.Peer reviewe

    Emotion Classification through Nonlinear EEG Analysis Using Machine Learning Methods

    Get PDF
    Background: Emotion recognition, as a subset of affective computing, has received considerable attention in recent years. Emotions are key to human-computer interactions. Electroencephalogram (EEG) is considered a valuable physiological source of information for classifying emotions. However, it has complex and chaotic behavior.Methods: In this study, an attempt is made to extract important nonlinear features from EEGs with the aim of emotion recognition. We also take advantage of machine learning methods such as evolutionary feature selection methods and committee machines to enhance the classification performance. Classification performed concerning both arousal and valence factors.Results: Results suggest that the proposed method is successful and comparable to the previous works. A recognition rate equal to 90% achieved, and the most significant features reported. We apply the final classification scheme to 2 different databases including our recorded EEGs and a benchmark dataset to evaluate the suggested approach.Conclusion: Our findings approve of the effectiveness of using nonlinear features and a combination of classifiers. Results are also discussed from different points of view to understand brain dynamics better while emotion changes. This study reveals useful insights about emotion classification and brain-behavior related to emotion elicitation
    corecore