14,315 research outputs found

    Machine Learning for Load Profile Data Analytics and Short-term Load Forecasting

    Get PDF
    Short-term load forecasting (STLF) is a key issue for the operation and dispatch of day ahead energy market. It is a prerequisite for the economic operation of power systems and the basis of dispatching and making startup-shutdown plans, which plays a key role in the automatic control of power systems. Accurate power load forecasting not only help users choose a more appropriate electricity consumption scheme and reduces a lot of electric cost expenditure but also is conducive to optimizing the resources of power systems. This advantage helps while improving equipment utilization for reducing the production cost and improving the economic benefit, and improving power supply capability. Therefore, ultimately achieving the aim of efficient demand response program. This thesis outlines some machine learning based data driven models for STLF in smart grid. It also presents different policies and current statuses as well as future research direction for developing new STLF models. This thesis outlines three projects for load profile data analytics and machine learning based STLF models. First project is, load profile classification and determining load demand variability with the aim to estimate the load demand of a customer. In this project load profile data collected from smart meter are classified using recently developed extended nearest neighbor (ENN) algorithm. Here we have calculated generalized class wise statistics which will give the idea of load demand variability of a customer. Finally the load demand of a particular customer is estimated based on generalized class wise statistics, maximum load demand and minimum load demand. In the second project, a composite ENN model is proposed for STLF. The ENN model is proposed to improve the performance of k-nearest neighbor (kNN) algorithm based STLF models. In this project we have developed three individual models to process weather data i.e., temperature, social variables, and load demand data. The load demand is predicted separately for different input variables. Finally the load demand is forecasted from the weighted average of three models. The weights are determined based on the change in generalized class wise statistics. This projects provides a significant improvement in the performance of load forecasting accuracy compared to kNN based models. In the third project, an advanced data driven model is developed. Here, we have proposed a novel hybrid load forecasting model based on novel signal decomposition and correlation analysis. The hybrid model consists of improved empirical mode decomposition, T-Copula based correlation analysis. Finally we have employed deep belief network for making load demand forecasting. The results are compared with previous studies and it is evident that there is a significant improvement in mean absolute percentage error (MAPE) and root mean square error (RMSE)

    Load forecast on a Micro Grid level through Machine Learning algorithms

    Get PDF
    As Micro Redes constituem um sector em crescimento da indústria energética, representando uma mudança de paradigma, desde as remotas centrais de geração até à produção mais localizada e distribuída. A capacidade de isolamento das principais redes elétricas e atuar de forma independente tornam as Micro Redes em sistemas resilientes, capazes de conduzir operações flexíveis em paralelo com a prestação de serviços que tornam a rede mais competitiva. Como tal, as Micro Redes fornecem energia limpa eficiente de baixo custo, aprimoram a coordenação dos ativos e melhoram a operação e estabilidade da rede regional de eletricidade, através da capacidade de resposta dinâmica aos recursos energéticos. Para isso, necessitam de uma coordenação de gestão inteligente que equilibre todas as tecnologias ao seu dispor. Daqui surge a necessidade de recorrer a modelos de previsão de carga e de produção robustos e de confiança, que interligam a alocação dos recursos da rede perante as necessidades emergentes. Sendo assim, foi desenvolvida a metodologia HALOFMI, que tem como principal objetivo a criação de um modelo de previsão de carga para 24 horas. A metodologia desenvolvida é constituída, numa primeira fase, por uma abordagem híbrida de multinível para a criação e escolha de atributos, que alimenta uma rede neuronal (Multi-Layer Perceptron) sujeita a um ajuste de híper-parâmetros. Posto isto, numa segunda fase são testados dois modos de aplicação e gestão de dados para a Micro Rede. A metodologia desenvolvida é aplicada em dois casos de estudo: o primeiro é composto por perfis de carga agregados correspondentes a dados de clientes em Baixa Tensão Normal e de Unidades de Produção e Autoconsumo (UPAC). Este caso de estudo apresenta-se como um perfil de carga elétrica regular e com contornos muito suaves. O segundo caso de estudo diz respeito a uma ilha turística e representa um perfil irregular de carga, com variações bruscas e difíceis de prever e apresenta um desafio maior em termos de previsão a 24-horas A partir dos resultados obtidos, é avaliado o impacto da integração de uma seleção recursiva inteligente de atributos, seguido por uma viabilização do processo de redução da dimensão de dados para o operador da Micro Rede, e por fim uma comparação de estimadores usados no modelo de previsão, através de medidores de erros na performance do algoritmo.Micro Grids constitute a growing sector of the energetic industry, representing a paradigm shift from the central power generation plans to a more distributed generation. The capacity to work isolated from the main electric grid make the MG resilient system, capable of conducting flexible operations while providing services that make the network more competitive. Additionally, Micro Grids supply clean and efficient low-cost energy, enhance the flexible assets coordination and improve the operation and stability of the of the local electric grid, through the capability of providing a dynamic response to the energetic resources. For that, it is required an intelligent coordination which balances all the available technologies. With this, rises the need to integrate accurate and robust load and production forecasting models into the MG management platform, thus allowing a more precise coordination of the flexible resource according to the emerging demand needs. For these reasons, the HALOFMI methodology was developed, which focus on the creation of a precise 24-hour load forecast model. This methodology includes firstly, a hybrid multi-level approach for the creation and selection of features. Then, these inputs are fed to a Neural Network (Multi-Layer Perceptron) with hyper-parameters tuning. In a second phase, two ways of data operation are compared and assessed, which results in the viability of the network operating with a reduced number of training days without compromising the model's performance. Such process is attained through a sliding window application. Furthermore, the developed methodology is applied in two case studies, both with 15-minute timesteps: the first one is composed by aggregated load profiles of Standard Low Voltage clients, including production and self-consumption units. This case study presents regular and very smooth load profile curves. The second case study concerns a touristic island and represents an irregular load curve with high granularity with abrupt variations. From the attained results, it is evaluated the impact of integrating a recursive intelligent feature selection routine, followed by an assessment on the sliding window application and at last, a comparison on the errors coming from different estimators for the model, through several well-defined performance metrics

    Analysis on the Application of Machine-Learning Algorithms for District-Heating Networks' Characterization & Management

    Get PDF
    359 p.Esta tesis doctoral estudia la viabilidad de la aplicación de algoritmos de aprendizaje automático para la caracterización energética de los edificios en entornos de redes de calefacción urbana. En particular, la disertación se centrará en el análisis de las siguientes cuatro aplicaciones principales: (i)La identificación y eliminación de valores atípicos de demanda en los edificios; (ii) Reconocimiento de los principales patrones de demanda energética en edificios conectados a la red. (iii) Estudio de interpretabilidad/clasificación de dichos patrones energéticos. Análisis descriptivo de los patrones de la demanda. (iv) Predicción de la demanda de energía en resolución diaria y horaria.El interés de la tesis fue despertado por la situación energética actual en la Unión Europea, donde los edificios son responsables de más del 40% del consumo total de energía. Las redes de distrito modernas han sido identificadas como sistemas eficientes para el suministro de energía desde las plantas de producción hasta los consumidores finales/edificios debido a su economía de escala. Además, debido a la agrupación de edificios en una misma red, permitirán el desarrollo e implementación de algoritmos para la gestión de la energía en el sistema completo
    corecore