1,120 research outputs found

    Network perspectives on epilepsy using EEG/MEG source connectivity

    Get PDF
    The evolution of EEG/MEG source connectivity is both, a promising, and controversial advance in the characterization of epileptic brain activity. In this narrative review we elucidate the potential of this technology to provide an intuitive view of the epileptic network at its origin, the different brain regions involved in the epilepsy, without the limitation of electrodes at the scalp level. Several studies have confirmed the added value of using source connectivity to localize the seizure onset zone and irritative zone or to quantify the propagation of epileptic activity over time. It has been shown in pilot studies that source connectivity has the potential to obtain prognostic correlates, to assist in the diagnosis of the epilepsy type even in the absence of visually noticeable epileptic activity in the EEG/MEG, and to predict treatment outcome. Nevertheless, prospective validation studies in large and heterogeneous patient cohorts are still lacking and are needed to bring these techniques into clinical use. Moreover, the methodological approach is challenging, with several poorly examined parameters that most likely impact the resulting network patterns. These fundamental challenges affect all potential applications of EEG/MEG source connectivity analysis, be it in a resting, spiking, or ictal state, and also its application to cognitive activation of the eloquent area in presurgical evaluation. However, such method can allow unique insights into physiological and pathological brain functions and have great potential in (clinical) neuroscience

    EEG correlated functional MRI and postoperative outcome in focal epilepsy

    Get PDF
    Background: The main challenge in assessing patients with epilepsy for resective surgery is localising seizure onset. Frequently, identification of the irritative and seizure onset zones requires invasive EEG. EEG correlated functional MRI (EEG-fMRI) is a novel imaging technique which may provide localising information with regard to these regions. In patients with focal epilepsy, interictal epileptiform discharge (IED) correlated blood oxygen dependent level (BOLD) signal changes were observed in approximately 50% of patients in whom IEDs are recorded. In 70%, these are concordant with expected seizure onset defined by non-invasive electroclinical information. Assessment of clinical validity requires post-surgical outcome studies which have, to date, been limited to case reports of correlation with intracranial EEG. The value of EEG-fMRI was assessed in patients with focal epilepsy who subsequently underwent epilepsy surgery, and IED correlated fMRI signal changes were related to the resection area and clinical outcome. Methods: Simultaneous EEG-fMRI was recorded in 76 patients undergoing presurgical evaluation and the locations of IED correlated preoperative BOLD signal change were compared with the resected area and postoperative outcome. Results: 21 patients had activations with epileptic activity on EEG-fMRI and 10 underwent surgical resection. Seven of 10 patients were seizure free following surgery and the area of maximal BOLD signal change was concordant with resection in six of seven patients. In the remaining three patients, with reduced seizure frequency post-surgically, areas of significant IED correlated BOLD signal change lay outside the resection. 42 of 55 patients who had no IED related activation underwent resection. Conclusion: These results show the potential value of EEG-fMRI in presurgical evaluation

    Independent component analysis of interictal fMRI in focal epilepsy: comparison with general linear model-based EEG-correlated fMRI

    Get PDF
    The general linear model (GLM) has been used to analyze simultaneous EEG–fMRI to reveal BOLD changes linked to interictal epileptic discharges (IED) identified on scalp EEG. This approach is ineffective when IED are not evident in the EEG. Data-driven fMRI analysis techniques that do not require an EEG derived model may offer a solution in these circumstances. We compared the findings of independent components analysis (ICA) and EEG-based GLM analyses of fMRI data from eight patients with focal epilepsy. Spatial ICA was used to extract independent components (IC) which were automatically classified as either BOLD-related, motion artefacts, EPI-susceptibility artefacts, large blood vessels, noise at high spatial or temporal frequency. The classifier reduced the number of candidate IC by 78%, with an average of 16 BOLD-related IC. Concordance between the ICA and GLM-derived results was assessed based on spatio-temporal criteria. In each patient, one of the IC satisfied the criteria to correspond to IED-based GLM result. The remaining IC were consistent with BOLD patterns of spontaneous brain activity and may include epileptic activity that was not evident on the scalp EEG. In conclusion, ICA of fMRI is capable of revealing areas of epileptic activity in patients with focal epilepsy and may be useful for the analysis of EEG–fMRI data in which abnormalities are not apparent on scalp EEG

    Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures

    Get PDF
    The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone) and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS), an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity) between coherent sources was investigated using the renormalized partial directed coherence (RPDC) method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis

    Interictal Functional Connectivity of Human Epileptic Networks Assessed by Intracerebral EEG and BOLD Signal Fluctuations

    Get PDF
    In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal derived from resting state functional magnetic resonance imaging (fMRI) reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG) and resting-state functional MRI (fMRI) in 5 patients suffering from intractable temporal lobe epilepsy (TLE). Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions) during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband) and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal). This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional connectivity measured by iEEG and BOLD signals give complementary but sometimes inconsistent information in TLE

    Mapping preictal and ictal haemodynamic networks using video-electroencephalography and functional imaging

    Get PDF
    Ictal patterns on scalp-electroencephalography are often visible only after propagation, therefore rendering localization of the seizure onset zone challenging. We hypothesized that mapping haemodynamic changes before and during seizures using simultaneous video-electroencephalography and functional imaging will improve the localization of the seizure onset zone. Fifty-five patients with ≥2 refractory focal seizures/day, and who had undergone long-term video-electroencephalography monitoring were included in the study. ‘Preictal' (30 s immediately preceding the electrographic seizure onset) and ictal phases, ‘ictal-onset'; ‘ictalestablished' and ‘late ictal', were defined based on the evolution of the electrographic pattern and clinical semiology. The functional imaging data were analysed using statistical parametric mapping to map ictal phase-related haemodynamic changes consistent across seizures. The resulting haemodynamic maps were overlaid on co-registered anatomical scans, and the spatial concordance with the presumed and invasively defined seizure onset zone was determined. Twenty patients had typical seizures during functional imaging. Seizures were identified on video-electroencephalography in 15 of 20, on electroencephalography alone in two and on video alone in three patients. All patients showed significant ictal-related haemodynamic changes. In the six cases that underwent invasive evaluation, the ictal-onset phase-related maps had a degree of concordance with the presumed seizure onset zone for all patients. The most statistically significant haemodynamic cluster within the presumed seizure onset zone was between 1.1 and 3.5 cm from the invasively defined seizure onset zone, which was resected in two of three patients undergoing surgery (Class I post-surgical outcome) and was not resected in one patient (Class III post-surgical outcome). In the remaining 14 cases, the ictal-onset phase-related maps had a degree of concordance with the presumed seizure onset zone in six of eight patients with structural-lesions and five of six non-lesional patients. The most statistically significant haemodynamic cluster was localizable at sub-lobar level within the presumed seizure onset zone in six patients. The degree of concordance of haemodynamic maps was significantly better (P < 0.05) for the ictal-onset phase [entirely concordant/concordant plus (13/20; 65%) + some concordance (4/20; 20%) = 17/20; 85%] than ictal-established [entirely concordant/concordant plus (5/13; 38%) + some concordance (4/13; 31%) = 9/13; 69%] and late ictal [concordant plus (1/9; 11%) + some concordance (4/9; 44%) = 5/9; 55%] phases. Ictal propagation-related haemodynamic changes were also seen in symptomatogenic areas (9/20; 45%) and the default mode network (13/20; 65%). A common pattern of preictal changes was seen in 15 patients, starting between 98 and 14 s before electrographic seizure onset, and the maps had a degree of concordance with the presumed seizure onset zone in 10 patients. In conclusion, preictal and ictal haemodynamic changes in refractory focal seizures can non-invasively localize seizure onset at sub-lobar/gyral level when ictal scalp-electroencephalography is not helpfu

    Mapping the Effect of Interictal Epileptic Activity Density During Wakefulness on Brain Functioning in Focal Childhood Epilepsies With Centrotemporal Spikes

    Get PDF
    Childhood epilepsy with centrotemporal spikes (CECTS) is the most common type of \u201cself-limited focal epilepsies.\u201d In its typical presentation, CECTS is a condition reflecting non-lesional cortical hyperexcitability of rolandic regions. The benign evolution of this disorder is challenged by the frequent observation of associated neuropsychological deficits and behavioral impairment. The abundance (or frequency) of interictal centrotemporal spikes (CTS) in CECTS is considered a risk factor for deficits in cognition. Herein, we captured the hemodynamic changes triggered by the CTS density measure (i.e., the number of CTS for time bin) obtained in a cohort of CECTS, studied by means of video electroencephalophy/functional MRI during quite wakefulness. We aim to demonstrate a direct influence of the diurnal CTS frequency on epileptogenic and cognitive networks of children with CECTS. A total number of 8,950 CTS (range between 27 and 801) were recorded in 23 CECTS (21 male), with a mean number of 255 CTS/patient and a mean density of CTS/30 s equal to 10,866 \ub1 11.46. Two independent general linear model models were created for each patient based on the effect of interest: \u201cindividual CTS\u201d in model 1 and \u201cCTS density\u201d in model 2. Hemodynamic correlates of CTS density revealed the involvement of a widespread cortical\u2013subcortical network encompassing the sensory-motor cortex, the Broca's area, the premotor cortex, the thalamus, the putamen, and red nucleus, while in the CTS event-related model, changes were limited to blood\u2013oxygen-level-dependent (BOLD) signal increases in the sensory-motor cortices. A linear relationship was observed between the CTS density hemodynamic changes and both disease duration (positive correlation) and age (negative correlation) within the language network and the bilateral insular cortices. Our results strongly support the critical role of the CTS frequency, even during wakefulness, to interfere with the normal functioning of language brain networks
    corecore