37 research outputs found

    SaS-BCI: A New Strategy to Predict Image Memorability and use Mental Imagery as a Brain-Based Biometric Authentication

    Get PDF
    Security authentication is one of the most important levels of information security. Nowadays, human biometric techniques are the most secure methods for authentication purposes that cover the problems of older types of authentication like passwords and pins. There are many advantages of recent biometrics in terms of security; however, they still have some disadvantages. Progresses in technology made some specific devices, which make it possible to copy and make a fake human biometric because they are all visible and touchable. According to this matter, there is a need for a new biometric to cover the issues of other types. Brainwave is human data, which uses them as a new type of security authentication that has engaged many researchers. There are some research and experiments, which are investigating and testing EEG signals to find the uniqueness of human brainwave. Some researchers achieved high accuracy rates in this area by applying different signal acquisition techniques, feature extraction and classifications using Brain–Computer Interface (BCI). One of the important parts of any BCI processes is the way that brainwaves could be acquired and recorded. A new Signal Acquisition Strategy is presented in this paper for the process of authorization and authentication of brain signals specifically. This is to predict image memorability from the user’s brain to use mental imagery as a visualization pattern for security authentication. Therefore, users can authenticate themselves with visualizing a specific picture in their minds. In conclusion, we can see that brainwaves can be different according to the mental tasks, which it would make it harder using them for authentication process. There are many signal acquisition strategies and signal processing for brain-based authentication that by using the right methods, a higher level of accuracy rate could be achieved which is suitable for using brain signal as another biometric security authentication

    Bioelectrical User Authentication

    Get PDF
    There has been tremendous growth of mobile devices, which includes mobile phones, tablets etc. in recent years. The use of mobile phone is more prevalent due to their increasing functionality and capacity. Most of the mobile phones available now are smart phones and better processing capability hence their deployment for processing large volume of information. The information contained in these smart phones need to be protected against unauthorised persons from getting hold of personal data. To verify a legitimate user before accessing the phone information, the user authentication mechanism should be robust enough to meet present security challenge. The present approach for user authentication is cumbersome and fails to consider the human factor. The point of entry mechanism is intrusive which forces users to authenticate always irrespectively of the time interval. The use of biometric is identified as a more reliable method for implementing a transparent and non-intrusive user authentication. Transparent authentication using biometrics provides the opportunity for more convenient and secure authentication over secret-knowledge or token-based approaches. The ability to apply biometrics in a transparent manner improves the authentication security by providing a reliable way for smart phone user authentication. As such, research is required to investigate new modalities that would easily operate within the constraints of a continuous and transparent authentication system. This thesis explores the use of bioelectrical signals and contextual information for non-intrusive approach for authenticating a user of a mobile device. From fusion of bioelectrical signals and context awareness information, three algorithms where created to discriminate subjects with overall Equal Error Rate (EER of 3.4%, 2.04% and 0.27% respectively. Based vii | P a g e on the analysis from the multi-algorithm implementation, a novel architecture is proposed using a multi-algorithm biometric authentication system for authentication a user of a smart phone. The framework is designed to be continuous, transparent with the application of advanced intelligence to further improve the authentication result. With the proposed framework, it removes the inconvenience of password/passphrase etc. memorability, carrying of token or capturing a biometric sample in an intrusive manner. The framework is evaluated through simulation with the application of a voting scheme. The simulation of the voting scheme using majority voting improved to the performance of the combine algorithm (security level 2) to FRR of 22% and FAR of 0%, the Active algorithm (security level 2) to FRR of 14.33% and FAR of 0% while the Non-active algorithm (security level 3) to FRR of 10.33% and FAR of 0%

    A Wizard Hat for the Brain: Predicting Long-Term Memory Retention Using Electroencephalography

    Get PDF
    Learning is a ubiquitous process that transforms novel information and events into stored memory representations that can later be accessed. As a learner acquires new information, any feature of a memory that is shared with other memories may produce some level of retrieval- competition, making accurate recall more difficult. One of the most effective ways to reduce this competition and create distinct representations for potentially confusable memories is to practice retrieving all of the information through self-testing with feedback. As a person tests themself, competition between easily-confusable memories (e.g. memories that share similar visual or semantic features) decreases and memory representations for unique items are made more distinct. Using a portable, consumer-grade electroencephalography (EEG) device, I attempted to harness competition levels in the brain by training a machine learning classifier to predict long- term retention of novel associations. Specifically, I compare the accuracy of two logistic regression classifiers: one trained using existing category-word pairings (as has been done previously in the literature), and one trained using new episodic image-name associations developed to more closely model memory competition. I predicted that the newly developed classifier would be able to more accurately predict long-term retention. Further refinements to the predictive model and its applications are discussed

    Inferences from Interactions with Smart Devices: Security Leaks and Defenses

    Get PDF
    We unlock our smart devices such as smartphone several times every day using a pin, password, or graphical pattern if the device is secured by one. The scope and usage of smart devices\u27 are expanding day by day in our everyday life and hence the need to make them more secure. In the near future, we may need to authenticate ourselves on emerging smart devices such as electronic doors, exercise equipment, power tools, medical devices, and smart TV remote control. While recent research focuses on developing new behavior-based methods to authenticate these smart devices, pin and password still remain primary methods to authenticate a user on a device. Although the recent research exposes the observation-based vulnerabilities, the popular belief is that the direct observation attacks can be thwarted by simple methods that obscure the attacker\u27s view of the input console (or screen). In this dissertation, we study the users\u27 hand movement pattern while they type on their smart devices. The study concentrates on the following two factors; (1) finding security leaks from the observed hand movement patterns (we showcase that the user\u27s hand movement on its own reveals the user\u27s sensitive information) and (2) developing methods to build lightweight, easy to use, and more secure authentication system. The users\u27 hand movement patterns were captured through video camcorder and inbuilt motion sensors such as gyroscope and accelerometer in the user\u27s device

    Brain-computer interfaces in safety and security fields: Risks and applications

    Get PDF
    With the recent increasing interest of researchers for Brain-Computer Interface (BCI), emerges a challenge for safety and security fields. Thus, the general objective of this research is to explore, from an engineering perspective, the trends and main research needs on the risks and applications of BCIs in safety and security fields. In addition, the specific objective is to explore the BCIs as an emerging risk. The method used consists of the sequential application of two phases. The first phase is carried out a scoping literature review. And with the second phase, the BCIs are analyzed as an emerging risk. With the first phase, thematic categories are analyzed. The categories are fatigue detection, safety control, and risk identification within the safety field. And within the security field are the categories cyberattacks and authentication. As a result, a trend is identified that considers the BCI as a source of risk and as a technology for risk prevention. Also, another trend based on the definitions and concepts of safety and security applied to BCIs is identified. Thus, “BCI safety” and “BCI security” are defined. The second phase proposes a general emerging risk framing of the BCI technology based on the qualitative results of type, level, and management strategies for emerging risk. These results define a framework for studying the safety and security of BCIs. In addition, there are two challenges. Firstly, to design techniques to assess the BCI risks. Secondly, probably more critical, to define the tolerability criteria of individual and social risk

    A robust brain pattern for brain-based authentication methods using deep breath

    Get PDF
    Security authentication involves the process of verifying a person's identity. Authentication technology has played a crucial role in data security for many years. However, existing typical biometric authentication technologies exhibit limitations related to usability, time efficiency, and notably, the long-term viability of the method. Recent technological advancements have led to the development of specific devices capable of reproducing human biometrics due to their visibility and tactile nature. Consequently, there is a demand for a new biometric method to address the limitations of current authentication systems. Human brain signals have been utilized in various Brain-Computer Interface (BCI) applications. Nevertheless, this approach also faces challenges related to usability, time efficiency, and most importantly, the stability of the method over time. Studies reveal that the stability of brain patterns poses a significant challenge in EEG-based authentication techniques. Stability refers to the capacity to withstand changes or disruptions, while permanency implies a lasting and unchanging state. Notably, stability can be temporary and subject to fluctuations, whereas permanency suggests a more enduring condition. Research demonstrates that utilizing alpha brainwaves is a superior option for authentication compared to other brainwave types. Many brain states lack stability in different situations. Interestingly, deep breathing can enhance alpha waves irrespective of the brain's current state. To explore the potential of utilizing deep breathing as a security pattern for authentication purposes, an experiment was conducted to investigate its effects on brain activity and its role in enhancing alpha brainwaves. By focusing on bolstering the permanency of brain patterns, our aim is to address the challenges associated with stability in EEG-based authentication techniques. The experimental results exhibited a high success rate of 91 % and 90 % for Support Vector Machine and Neural Network classifiers, respectively. These results suggest that deep breathing not only enhances permanency but could also serve as a suitable option for a brainwave-based authentication method

    Digital Interaction and Machine Intelligence

    Get PDF
    This book is open access, which means that you have free and unlimited access. This book presents the Proceedings of the 9th Machine Intelligence and Digital Interaction Conference. Significant progress in the development of artificial intelligence (AI) and its wider use in many interactive products are quickly transforming further areas of our life, which results in the emergence of various new social phenomena. Many countries have been making efforts to understand these phenomena and find answers on how to put the development of artificial intelligence on the right track to support the common good of people and societies. These attempts require interdisciplinary actions, covering not only science disciplines involved in the development of artificial intelligence and human-computer interaction but also close cooperation between researchers and practitioners. For this reason, the main goal of the MIDI conference held on 9-10.12.2021 as a virtual event is to integrate two, until recently, independent fields of research in computer science: broadly understood artificial intelligence and human-technology interaction

    Smart workplaces: a system proposal for stress management

    Get PDF
    Over the past last decades of contemporary society, workplaces have become the primary source of many health issues, leading to mental problems such as stress, depression, and anxiety. Among the others, environmental aspects have shown to be the causes of stress, illness, and lack of productivity. With the arrival of new technologies, especially in the smart workplaces field, most studies have focused on investigating the building energy efficiency models and human thermal comfort. However, little has been applied to occupants’ stress recognition and well-being overall. Due to this fact, this present study aims to propose a stress management solution for an interactive design system that allows the adapting of comfortable environmental conditions according to the user preferences by measuring in real-time the environmental and biological characteristics, thereby helping to prevent stress, as well as to enable users to cope stress when being stressed. The secondary objective will focus on evaluating one part of the system: the mobile application. The proposed system uses several usability methods to identify users’ needs, behavior, and expectations from the user-centered design approach. Applied methods, such as User Research, Card Sorting, and Expert Review, allowed us to evaluate the design system according to Heuristics Analysis, resulting in improved usability of interfaces and experience. The study presents the research results, the design interface, and usability tests. According to the User Research results, temperature and noise are the most common environmental stressors among the users causing stress and uncomfortable conditions to work in, and the preference for physical activities over the digital solutions for coping with stress. Additionally, the System Usability Scale (SUS) results identified that the system’s usability was measured as “excellent” and “acceptable” with a final score of 88 points out of the 100. It is expected that these conclusions can contribute to future investigations in the smart workplaces study field and their interaction with the people placed there.Nas Ășltimas dĂ©cadas da sociedade contemporĂąnea, o local de trabalho tem se tornado principal fonte de muitos problemas de saĂșde mental, como o stress, depressĂŁo e ansiedade. Os aspetos ambientais tĂȘm se revelado como as causas de stress, doenças, falta de produtividade, entre outros. Atualmente, com a chegada de novas tecnologias, principalmente na ĂĄrea de locais de trabalho inteligentes, a maioria dos estudos tem se concentrado na investigação de modelos de eficiĂȘncia energĂ©tica de edifĂ­cios e conforto tĂ©rmico humano. No entanto, pouco foi aplicado ao reconhecimento do stress dos ocupantes e ao bem-estar geral das pessoas. Diante disso, o objetivo principal Ă© propor um sistema de design de gestĂŁo do stress para um sistema de design interativo que permita adaptar as condiçÔes ambientais de acordo com as preferĂȘncias de utilizador, medindo em tempo real as caracterĂ­sticas ambientais e biolĂłgicas, auxiliando assim na prevenção de stress, bem como ajuda os utilizadores a lidar com o stress quando estĂŁo sob o mesmo. O segundo objetivo Ă© desenhar e avaliar uma parte do projeto — o protĂłtipo da aplicação mĂłvel atravĂ©s da realização de testes de usabilidade. O sistema proposto resulta da abordagem de design centrado no utilizador, utilizando diversos mĂ©todos de usabilidade para identificar as necessidades, comportamentos e as expectativas dos utilizadores. MĂ©todos aplicados, como Pesquisa de UsuĂĄrio, Card Sorting e RevisĂŁo de Especialistas, permitiram avaliar o sistema de design de acordo com a anĂĄlise heurĂ­stica, resultando numa melhoria na usabilidade das interfaces e experiĂȘncia. O estudo apresenta os resultados da pesquisa, a interface do design e os testes de usabilidade. De acordo com os resultados de User Research, a temperatura e o ruĂ­do sĂŁo os stressores ambientais mais comuns entre os utilizadores, causando stresse e condiçÔes menos favorĂĄveis para trabalhar, igualmente existe uma preferĂȘncia por atividades fĂ­sicas sobre as soluçÔes digitais na gestĂŁo do stresse. Adicionalmente, os resultados de System Usability Scale (SUS) identificaram a usabilidade do sistema de design como “excelente” e “aceitĂĄvel” com pontuação final de 88 pontos em 100. É esperado que essas conclusĂ”es possam contribuir para futuras investigaçÔes no campo de estudo dos smart workplaces e sua interação com os utilizadores

    How to improve learning from video, using an eye tracker

    Get PDF
    The initial trigger of this research about learning from video was the availability of log files from users of video material. Video modality is seen as attractive as it is associated with the relaxed mood of watching TV. The experiments in this research have the goal to gain more insight in viewing patterns of students when viewing video. Students received an awareness instruction about the use of possible alternative viewing behaviors to see whether this would enhance their learning effects. We found that: - the learning effects of students with a narrow viewing repertoire were less than the learning effects of students with a broad viewing repertoire or strategic viewers. - students with some basic knowledge of the topics covered in the videos benefited most from the use of possible alternative viewing behaviors and students with low prior knowledge benefited the least. - the knowledge gain of students with low prior knowledge disappeared after a few weeks; knowledge construction seems worse when doing two things at the same time. - media players could offer more options to help students with their search for the content they want to view again. - there was no correlation between pervasive personality traits and viewing behavior of students. The right use of video in higher education will lead to students and teachers that are more aware of their learning and teaching behavior, to better videos, to enhanced media players, and, finally, to higher learning effects that let users improve their learning from video
    corecore