7,618 research outputs found

    Considering Currency in Decision Trees in the Context of Big Data

    Get PDF
    In the current age of big data, decision trees are one of the most commonly applied data mining methods. However, for reliable results they require up-to-date input data, which is not always given in reality. We present a two-phase approach based on probability theory for considering currency of stored data in decision trees. Our approach is efficient and thus suitable for big data applications. Moreover, it is independent of the particular decision tree classifier. Finally, it is context-specific since the decision tree structure and supplemental data are taken into account. We demonstrate the benefits of the novel approach by applying it to three datasets. The results show a substantial increase in the classification success rate as opposed to not considering currency. Thus, applying our approach prevents wrong classification and consequently wrong decisions

    A Systematic Review of Learning based Notion Change Acceptance Strategies for Incremental Mining

    Get PDF
    The data generated contemporarily from different communication environments is dynamic in content different from the earlier static data environments. The high speed streams have huge digital data transmitted with rapid context changes unlike static environments where the data is mostly stationery. The process of extracting, classifying, and exploring relevant information from enormous flowing and high speed varying streaming data has several inapplicable issues when static data based strategies are applied. The learning strategies of static data are based on observable and established notion changes for exploring the data whereas in high speed data streams there are no fixed rules or drift strategies existing beforehand and the classification mechanisms have to develop their own learning schemes in terms of the notion changes and Notion Change Acceptance by changing the existing notion, or substituting the existing notion, or creating new notions with evaluation in the classification process in terms of the previous, existing, and the newer incoming notions. The research in this field has devised numerous data stream mining strategies for determining, predicting, and establishing the notion changes in the process of exploring and accurately predicting the next notion change occurrences in Notion Change. In this context of feasible relevant better knowledge discovery in this paper we have given an illustration with nomenclature of various contemporarily affirmed models of benchmark in data stream mining for adapting the Notion Change

    How to Cope with Change? - Preserving Validity of Predictive Services over Time

    Get PDF
    Companies more and more rely on predictive services which are constantly monitoring and analyzing the available data streams for better service offerings. However, sudden or incremental changes in those streams are a challenge for the validity and proper functionality of the predictive service over time. We develop a framework which allows to characterize and differentiate predictive services with regard to their ongoing validity. Furthermore, this work proposes a research agenda of worthwhile research topics to improve the long-term validity of predictive services. In our work, we especially focus on different scenarios of true label availability for predictive services as well as the integration of expert knowledge. With these insights at hand, we lay an important foundation for future research in the field of valid predictive services

    Incremental learning of concept drift from imbalanced data

    Get PDF
    Learning data sampled from a nonstationary distribution has been shown to be a very challenging problem in machine learning, because the joint probability distribution between the data and classes evolve over time. Thus learners must adapt their knowledge base, including their structure or parameters, to remain as strong predictors. This phenomenon of learning from an evolving data source is akin to learning how to play a game while the rules of the game are changed, and it is traditionally referred to as learning concept drift. Climate data, financial data, epidemiological data, spam detection are examples of applications that give rise to concept drift problems. An additional challenge arises when the classes to be learned are not represented (approximately) equally in the training data, as most machine learning algorithms work well only when the class distributions are balanced. However, rare categories are commonly faced in real-world applications, which leads to skewed or imbalanced datasets. Fraud detection, rare disease diagnosis, anomaly detection are examples of applications that feature imbalanced datasets, where data from category are severely underrepresented. Concept drift and class imbalance are traditionally addressed separately in machine learning, yet data streams can experience both phenomena. This work introduces Learn++.NIE (nonstationary & imbalanced environments) and Learn++.CDS (concept drift with SMOTE) as two new members of the Learn++ family of incremental learning algorithms that explicitly and simultaneously address the aforementioned phenomena. The former addresses concept drift and class imbalance through modified bagging-based sampling and replacing a class independent error weighting mechanism - which normally favors majority class - with a set of measures that emphasize good predictive accuracy on all classes. The latter integrates Learn++.NSE, an algorithm for concept drift, with the synthetic sampling method known as SMOTE, to cope with class imbalance. This research also includes a thorough evaluation of Learn++.CDS and Learn++.NIE on several real and synthetic datasets and on several figures of merit, showing that both algorithms are able to learn in some of the most difficult learning environments

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Comparative process mining:analyzing variability in process data

    Get PDF

    Comparative process mining:analyzing variability in process data

    Get PDF

    A Hierarchical Temporal Memory Sequence Classifier for Streaming Data

    Get PDF
    Real-world data streams often contain concept drift and noise. Additionally, it is often the case that due to their very nature, these real-world data streams also include temporal dependencies between data. Classifying data streams with one or more of these characteristics is exceptionally challenging. Classification of data within data streams is currently the primary focus of research efforts in many fields (i.e., intrusion detection, data mining, machine learning). Hierarchical Temporal Memory (HTM) is a type of sequence memory that exhibits some of the predictive and anomaly detection properties of the neocortex. HTM algorithms conduct training through exposure to a stream of sensory data and are thus suited for continuous online learning. This research developed an HTM sequence classifier aimed at classifying streaming data, which contained concept drift, noise, and temporal dependencies. The HTM sequence classifier was fed both artificial and real-world data streams and evaluated using the prequential evaluation method. Cost measures for accuracy, CPU-time, and RAM usage were calculated for each data stream and compared against a variety of modern classifiers (e.g., Accuracy Weighted Ensemble, Adaptive Random Forest, Dynamic Weighted Majority, Leverage Bagging, Online Boosting ensemble, and Very Fast Decision Tree). The HTM sequence classifier performed well when the data streams contained concept drift, noise, and temporal dependencies, but was not the most suitable classifier of those compared against when provided data streams did not include temporal dependencies. Finally, this research explored the suitability of the HTM sequence classifier for detecting stalling code within evasive malware. The results were promising as they showed the HTM sequence classifier capable of predicting coding sequences of an executable file by learning the sequence patterns of the x86 EFLAGs register. The HTM classifier plotted these predictions in a cardiogram-like graph for quick analysis by reverse engineers of malware. This research highlights the potential of HTM technology for application in online classification problems and the detection of evasive malware

    The GC3 framework : grid density based clustering for classification of streaming data with concept drift.

    Get PDF
    Data mining is the process of discovering patterns in large sets of data. In recent years there has been a paradigm shift in how the data is viewed. Instead of considering the data as static and available in databases, data is now regarded as a stream as it continuously flows into the system. One of the challenges posed by the stream is its dynamic nature, which leads to a phenomenon known as Concept Drift. This causes a need for stream mining algorithms which are adaptive incremental learners capable of evolving and adjusting to the changes in the stream. Several models have been developed to deal with Concept Drift. These systems are discussed in this thesis and a new system, the GC3 framework is proposed. The GC3 framework leverages the advantages of the Gris Density based Clustering and the Ensemble based classifiers for streaming data, to be able to detect the cause of the drift and deal with it accordingly. In order to demonstrate the functionality and performance of the framework a synthetic data stream called the TJSS stream is developed, which embodies a variety of drift scenarios, and the model’s behavior is analyzed over time. Experimental evaluation with the synthetic stream and two real world datasets demonstrated high prediction capability of the proposed system with a small ensemble size and labeling ratio. Comparison of the methodology with a traditional static model with no drifts detection capability and with existing ensemble techniques for stream classification, showed promising results. Also, the analysis of data structures maintained by the framework provided interpretability into the dynamics of the drift over time. The experimentation analysis of the GC3 framework shows it to be promising for use in dynamic drifting environments where concepts can be incrementally learned in the presence of only partially labeled data
    corecore