9 research outputs found

    Computerised electrocardiogram classification

    Get PDF
    Advances in computing have resulted in many engineering processes being automated. Electrocardiogram (ECG) classification is one such process. The analysis of ECGs can benefit from the wide availability and power of modern computers. This study presents the usage of computer technology in the field of computerised ECG classification. Computerised electrocardiogram classification can help to reduce healthcare costs by enabling suitably equipped general practitioners to refer to hospital only those people with serious heart problems. Computerised ECG classification can also be very useful in shortening hospital waiting lists and saving life by discovering heart diseases early. The thesis investigates the automatic classification of ECGs into different disease categories using Artificial Intelligence (AI) techniques. A comparison of the use of different feature sets and AI classifiers is presented. The feature sets include conventional cardiological features, as well as features taken directly from time domain samples of an ECG. The benchmark AI classifiers tested include those based on neural network, k-Nearest Neighbour and inductive learning techniques. The research proposes two modifications to the learning vector quantisation (LVQ) neural network, namely the All Weights Updating-LVQ (AWU-LVQ) algorithm and the Neighbouring Weights Updating-LVQ (NWU-LVQ) algorithm, yielding an "intelligent" diagnostic heart system with higher accuracy and reduced training time compared to existing AI techniques.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Computerised electrocardiogram classification

    Get PDF
    Advances in computing have resulted in many engineering processes being automated. Electrocardiogram (ECG) classification is one such process. The analysis of ECGs can benefit from the wide availability and power of modern computers. This study presents the usage of computer technology in the field of computerised ECG classification. Computerised electrocardiogram classification can help to reduce healthcare costs by enabling suitably equipped general practitioners to refer to hospital only those people with serious heart problems. Computerised ECG classification can also be very useful in shortening hospital waiting lists and saving life by discovering heart diseases early. The thesis investigates the automatic classification of ECGs into different disease categories using Artificial Intelligence (AI) techniques. A comparison of the use of different feature sets and AI classifiers is presented. The feature sets include conventional cardiological features, as well as features taken directly from time domain samples of an ECG. The benchmark AI classifiers tested include those based on neural network, k-Nearest Neighbour and inductive learning techniques. The research proposes two modifications to the learning vector quantisation (LVQ) neural network, namely the All Weights Updating-LVQ (AWU-LVQ) algorithm and the Neighbouring Weights Updating-LVQ (NWU-LVQ) algorithm, yielding an "intelligent" diagnostic heart system with higher accuracy and reduced training time compared to existing AI techniques

    Intelligent strategies for mobile robotics in laboratory automation

    Get PDF
    In this thesis a new intelligent framework is presented for the mobile robots in laboratory automation, which includes: a new multi-floor indoor navigation method is presented and an intelligent multi-floor path planning is proposed; a new signal filtering method is presented for the robots to forecast their indoor coordinates; a new human feature based strategy is proposed for the robot-human smart collision avoidance; a new robot power forecasting method is proposed to decide a distributed transportation task; a new blind approach is presented for the arm manipulations for the robots

    Personalized Health Monitoring Using Evolvable Block-based Neural Networks

    Get PDF
    This dissertation presents personalized health monitoring using evolvable block-based neural networks. Personalized health monitoring plays an increasingly important role in modern society as the population enjoys longer life. Personalization in health monitoring considers physiological variations brought by temporal, personal or environmental differences, and demands solutions capable to reconfigure and adapt to specific requirements. Block-based neural networks (BbNNs) consist of 2-D arrays of modular basic blocks that can be easily implemented using reconfigurable digital hardware such as field programmable gate arrays (FPGAs) that allow on-line partial reorganization. The modular structure of BbNNs enables easy expansion in size by adding more blocks. A computationally efficient evolutionary algorithm is developed that simultaneously optimizes structure and weights of BbNNs. This evolutionary algorithm increases optimization speed by integrating a local search operator. An adaptive rate update scheme removing manual tuning of operator rates enhances the fitness trend compared to pre-determined fixed rates. A fitness scaling with generalized disruptive pressure reduces the possibility of premature convergence. The BbNN platform promises an evolvable solution that changes structures and parameters for personalized health monitoring. A BbNN evolved with the proposed evolutionary algorithm using the Hermite transform coefficients and a time interval between two neighboring R peaks of ECG signal, provides a patient-specific ECG heartbeat classification system. Experimental results using the MIT-BIH Arrhythmia database demonstrate a potential for significant performance enhancements over other major techniques

    Heart Diseases Diagnosis Using Artificial Neural Networks

    Get PDF
    Information technology has virtually altered every aspect of human life in the present era. The application of informatics in the health sector is rapidly gaining prominence and the benefits of this innovative paradigm are being realized across the globe. This evolution produced large number of patients’ data that can be employed by computer technologies and machine learning techniques, and turned into useful information and knowledge. This data can be used to develop expert systems to help in diagnosing some life-threating diseases such as heart diseases, with less cost, processing time and improved diagnosis accuracy. Even though, modern medicine is generating huge amount of data every day, little has been done to use this available data to solve challenges faced in the successful diagnosis of heart diseases. Highlighting the need for more research into the usage of robust data mining techniques to help health care professionals in the diagnosis of heart diseases and other debilitating disease conditions. Based on the foregoing, this thesis aims to develop a health informatics system for the classification of heart diseases using data mining techniques focusing on Radial Basis functions and emerging Neural Networks approach. The presented research involves three development stages; firstly, the development of a preliminary classification system for Coronary Artery Disease (CAD) using Radial Basis Function (RBF) neural networks. The research then deploys the deep learning approach to detect three different types of heart diseases i.e. Sleep Apnea, Arrhythmias and CAD by designing two novel classification systems; the first adopt a novel deep neural network method (with Rectified Linear unit activation) design as the second approach in this thesis and the other implements a novel multilayer kernel machine to mimic the behaviour of deep learning as the third approach. Additionally, this thesis uses a dataset obtained from patients, and employs normalization and feature extraction means to explore it in a unique way that facilitates its usage for training and validating different classification methods. This unique dataset is useful to researchers and practitioners working in heart disease treatment and diagnosis. The findings from the study reveal that the proposed models have high classification performance that is comparable, or perhaps exceed in some cases, the existing automated and manual methods of heart disease diagnosis. Besides, the proposed deep-learning models provide better performance when applied on large data sets (e.g., in the case of Sleep Apnea), with reasonable performance with smaller data sets. The proposed system for clinical diagnoses of heart diseases, contributes to the accurate detection of such disease, and could serve as an important tool in the area of clinic support system. The outcome of this study in form of implementation tool can be used by cardiologists to help them make more consistent diagnosis of heart diseases

    Daftar Ebook Engineering Science Terbitan Springer Tahun 2018

    Get PDF
    Artikel ini memuat daftar judul ebook bidang ilmu teknik yang diterbitkan oleh Springer pada tahun 2018 yang dimiliki oleh Unand

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed
    corecore