83 research outputs found

    Automated Classification for Electrophysiological Data: Machine Learning Approaches for Disease Detection and Emotion Recognition

    Get PDF
    Smart healthcare is a health service system that utilizes technologies, e.g., artificial intelligence and big data, to alleviate the pressures on healthcare systems. Much recent research has focused on the automatic disease diagnosis and recognition and, typically, our research pays attention on automatic classifications for electrophysiological signals, which are measurements of the electrical activity. Specifically, for electrocardiogram (ECG) and electroencephalogram (EEG) data, we develop a series of algorithms for automatic cardiovascular disease (CVD) classification, emotion recognition and seizure detection. With the ECG signals obtained from wearable devices, the candidate developed novel signal processing and machine learning method for continuous monitoring of heart conditions. Compared to the traditional methods based on the devices at clinical settings, the developed method in this thesis is much more convenient to use. To identify arrhythmia patterns from the noisy ECG signals obtained through the wearable devices, CNN and LSTM are used, and a wavelet-based CNN is proposed to enhance the performance. An emotion recognition method with a single channel ECG is developed, where a novel exploitative and explorative GWO-SVM algorithm is proposed to achieve high performance emotion classification. The attractive part is that the proposed algorithm has the capability to learn the SVM hyperparameters automatically, and it can prevent the algorithm from falling into local solutions, thereby achieving better performance than existing algorithms. A novel EEG-signal based seizure detector is developed, where the EEG signals are transformed to the spectral-temporal domain, so that the dimension of the input features to the CNN can be significantly reduced, while the detector can still achieve superior detection performance

    Classification of Human Ventricular Arrhythmia in High Dimensional Representation Spaces

    Full text link
    We studied classification of human ECGs labelled as normal sinus rhythm, ventricular fibrillation and ventricular tachycardia by means of support vector machines in different representation spaces, using different observation lengths. ECG waveform segments of duration 0.5-4 s, their Fourier magnitude spectra, and lower dimensional projections of Fourier magnitude spectra were used for classification. All considered representations were of much higher dimension than in published studies. Classification accuracy improved with segment duration up to 2 s, with 4 s providing little improvement. We found that it is possible to discriminate between ventricular tachycardia and ventricular fibrillation by the present approach with much shorter runs of ECG (2 s, minimum 86% sensitivity per class) than previously imagined. Ensembles of classifiers acting on 1 s segments taken over 5 s observation windows gave best results, with sensitivities of detection for all classes exceeding 93%.Comment: 9 pages, 2 tables, 5 figure

    Atrial fibrillation detection using support vector machine and electrocardiographic descriptive statistics

    Full text link
    Copyright © 2017 Inderscience Enterprises Ltd. This paper proposes a new technique for detecting atrial fibrillation (AF). The method employs electrocardiographic features and support vector machine (SVM). The features include descriptive statistics of electrocardiographic RR interval. The RR interval is the distance in time between two consecutive R-peaks of electrocardiogram. AF detections using SVM with different electrocardiographic features and different SVM free parameters are explored. Employing SVM with the optimal free parameters and all the proposed electrocardiographic features, we find an AF detection technique with a comparable performance. The best performance obtained by the technique is 98.47% and 97.84%, in terms of sensitivity and specificity

    A real-time data mining technique applied for critical ECG rhythm on handheld device

    Get PDF
    Sudden cardiac arrest is often caused by ventricular arrhythmias and these episodes can lead to death for patients with chronic heart disease. Hence, detection of such arrhythmia is crucial in mobile ECG monitoring. In this research, a systematic study is carried out to investigate the possible limitations that are preventing the realisation of a real-time ECG arrhythmia data-mining algorithm suitable for application on mobile devices. Based on the findings, a computationally lightweight algorithm is devised and tested. Ventricular tachycardia (VT) is the most common type of ventricular arrhythmias and is also the deadliest.. A ventricular tachycardia (VT) episode is due to a disorder ofthe regular contractions ofthe heart. It occurs when the human heart ventricles generate a rapid heartbeat which disrupts the regular physiology cycle. The normal sinus rhythm (NSR) of a regular human heart beat signal has its signature PQRST waveform and in regular pattern. Whereas, the characteristics of a ventricular tachycardia (VT) signal waveforms are short R-R intervals, widen QRS duration and the absence of P-waves. Each type of ECG arrhythmia previously mentioned has a unique waveform signature that can be exploited as features to be used for the realization of an automated ECG analysis application. In order to extract this known ECG waveform feature, a time-domain analysis is proposed for feature extraction. Cross-correlation allows the computation of a co-efficient that quantifies the similarity between two times-series. Hence, by cross-correlating known ECG waveform templates with an unknown ECG signal, the coefficient can indicate the similarities. In previous published work, a preliminary study was carried out. The cross-correlation coefficient wave (CCW) technique was introduced for feature extraction. The outcome ofthis work presents CCW as a promising feature to differentiate between NSR, VT and Vfib signals. Moreover, cross-correlation computation does not require high computational overhead. Next, an automated detection algorithm requires a classification mechanism to make sense of the feature extracted. A further study is conducted and published, a fuzzy set k-NN classifier was introduced for the classification of CCW feature extracted from ECG signal segments. A training set of size 180 is used. The outcome of the study indicates that the computationally light-weight fuzzy k-NN classifier can reliably classify between NSR and VT signals, the class detection rate is low for classifying Vfib signal using the fuzzy k-NN classifier. Hence, a modified algorithm known as fuzzy hybrid classifier is proposed. By implementing an expert knowledge based fuzzy inference system for classification of ECG signal; the Vfib signal detection rate was improved. The comparison outcome was that the hybrid fuzzy classifier is able to achieve 91.1% correct rate, 100% sensitivity and 100% specificity. The previously mentioned result outperforms the compared classifiers. The proposed detection and classification algorithm is able to achieve high accuracy in analysing ECG signal feature of NSR, VT and Vfib nature. Moreover, the proposed classifier is successfully implemented on a smart mobile device and it is able to perform data-mining of the ECG signal with satisfiable results

    Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers

    Get PDF
    ©2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/. This version of the article: Mondéjar-Guerra, V., Novo, J., Rouco, J., Penedo, M. G., & Ortega, M. (2019). “Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers” has been accepted for publication in Biomedical Signal Processing and Control, 47, 41–48. The Version of Record is available online at: https://doi.org/10.1016/j.bspc.2018.08.007.[Abstract]: A method for the automatic classification of electrocardiograms (ECG) based on the combination of multiple Support Vector Machines (SVMs) is presented in this work. The method relies on the time intervals between consequent beats and their morphology for the ECG characterisation. Different descriptors based on wavelets, local binary patterns (LBP), higher order statistics (HOS) and several amplitude values were employed. Instead of concatenating all these features to feed a single SVM model, we propose to train specific SVM models for each type of feature. In order to obtain the final prediction, the decisions of the different models are combined with the product, sum, and majority rules. The designed methodology approaches are tested on the public MIT-BIH arrhythmia database, classifying four kinds of abnormal and normal beats. Our approach based on an ensemble of SVMs offered a satisfactory performance, improving the results when compared to a single SVM model using the same features. Additionally, our approach also showed better results in comparison with previous machine learning approaches of the state-of-the-art.This work was partially supported by the Research Project RTC-2016-5143-1, financed by the Spanish Ministry of Economy, Industry and Competitiveness and the European Regional Development Fund (ERDF). Also, this work has received financial support from the ERDF and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016–2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047.Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-04

    Multimodal Signal Processing for Diagnosis of Cardiorespiratory Disorders

    Get PDF
    This thesis addresses the use of multimodal signal processing to develop algorithms for the automated processing of two cardiorespiratory disorders. The aim of the first application of this thesis was to reduce false alarm rate in an intensive care unit. The goal was to detect five critical arrhythmias using processing of multimodal signals including photoplethysmography, arterial blood pressure, Lead II and augmented right arm electrocardiogram (ECG). A hierarchical approach was used to process the signals as well as a custom signal processing technique for each arrhythmia type. Sleep disorders are a prevalent health issue, currently costly and inconvenient to diagnose, as they normally require an overnight hospital stay by the patient. In the second application of this project, we designed automated signal processing algorithms for the diagnosis of sleep apnoea with a main focus on the ECG signal processing. We estimated the ECG-derived respiratory (EDR) signal using different methods: QRS-complex area, principal component analysis (PCA) and kernel PCA. We proposed two algorithms (segmented PCA and approximated PCA) for EDR estimation to enable applying the PCA method to overnight recordings and rectify the computational issues and memory requirement. We compared the EDR information against the chest respiratory effort signals. The performance was evaluated using three automated machine learning algorithms of linear discriminant analysis (LDA), extreme learning machine (ELM) and support vector machine (SVM) on two databases: the MIT PhysioNet database and the St. Vincent’s database. The results showed that the QRS area method for EDR estimation combined with the LDA classifier was the highest performing method and the EDR signals contain respiratory information useful for discriminating sleep apnoea. As a final step, heart rate variability (HRV) and cardiopulmonary coupling (CPC) features were extracted and combined with the EDR features and temporal optimisation techniques were applied. The cross-validation results of the minute-by-minute apnoea classification achieved an accuracy of 89%, a sensitivity of 90%, a specificity of 88%, and an AUC of 0.95 which is comparable to the best results reported in the literature

    ECG analysis and classification using CSVM, MSVM and SIMCA classifiers

    Get PDF
    Reliable ECG classification can potentially lead to better detection methods and increase accurate diagnosis of arrhythmia, thus improving quality of care. This thesis investigated the use of two novel classification algorithms: CSVM and SIMCA, and assessed their performance in classifying ECG beats. The project aimed to introduce a new way to interactively support patient care in and out of the hospital and develop new classification algorithms for arrhythmia detection and diagnosis. Wave (P-QRS-T) detection was performed using the WFDB Software Package and multiresolution wavelets. Fourier and PCs were selected as time-frequency features in the ECG signal; these provided the input to the classifiers in the form of DFT and PCA coefficients. ECG beat classification was performed using binary SVM. MSVM, CSVM, and SIMCA; these were subsequently used for simultaneously classifying either four or six types of cardiac conditions. Binary SVM classification with 100% accuracy was achieved when applied on feature-reduced ECG signals from well-established databases using PCA. The CSVM algorithm and MSVM were used to classify four ECG beat types: NORMAL, PVC, APC, and FUSION or PFUS; these were from the MIT-BIH arrhythmia database (precordial lead group and limb lead II). Different numbers of Fourier coefficients were considered in order to identify the optimal number of features to be presented to the classifier. SMO was used to compute hyper-plane parameters and threshold values for both MSVM and CSVM during the classifier training phase. The best classification accuracy was achieved using fifty Fourier coefficients. With the new CSVM classifier framework, accuracies of 99%, 100%, 98%, and 99% were obtained using datasets from one, two, three, and four precordial leads, respectively. In addition, using CSVM it was possible to successfully classify four types of ECG beat signals extracted from limb lead simultaneously with 97% accuracy, a significant improvement on the 83% accuracy achieved using the MSVM classification model. In addition, further analysis of the following four beat types was made: NORMAL, PVC, SVPB, and FUSION. These signals were obtained from the European ST-T Database. Accuracies between 86% and 94% were obtained for MSVM and CSVM classification, respectively, using 100 Fourier coefficients for reconstructing individual ECG beats. Further analysis presented an effective ECG arrhythmia classification scheme consisting of PCA as a feature reduction method and a SIMCA classifier to differentiate between either four or six different types of arrhythmia. In separate studies, six and four types of beats (including NORMAL, PVC, APC, RBBB, LBBB, and FUSION beats) with time domain features were extracted from the MIT-BIH arrhythmia database and the St Petersburg INCART 12-lead Arrhythmia Database (incartdb) respectively. Between 10 and 30 PCs, coefficients were selected for reconstructing individual ECG beats in the feature selection phase. The average classification accuracy of the proposed scheme was 98.61% and 97.78 % using the limb lead and precordial lead datasets, respectively. In addition, using MSVM and SIMCA classifiers with four ECG beat types achieved an average classification accuracy of 76.83% and 98.33% respectively. The effectiveness of the proposed algorithms was finally confirmed by successfully classifying both the six beat and four beat types of signal respectively with a high accuracy ratio

    Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators

    Get PDF
    Early recognition of ventricular fibrillation (VF) and electrical therapy are key for the survivalof out-of-hospital cardiac arrest (OHCA) patients treated with automated external defibrilla-tors (AED). AED algorithms for VF-detection are customarily assessed using Holter record-ings from public electrocardiogram (ECG) databases, which may be different from the ECGseen during OHCA events. This study evaluates VF-detection using data from both OHCApatients and public Holter recordings. ECG-segments of 4-s and 8-s duration were ana-lyzed. For each segment 30 features were computed and fed to state of the art machinelearning (ML) algorithms. ML-algorithms with built-in feature selection capabilities wereused to determine the optimal feature subsets for both databases. Patient-wise bootstraptechniques were used to evaluate algorithm performance in terms of sensitivity (Se), speci-ficity (Sp) and balanced error rate (BER). Performance was significantly better for publicdata with a mean Se of 96.6%, Sp of 98.8% and BER 2.2% compared to a mean Se of94.7%, Sp of 96.5% and BER 4.4% for OHCA data. OHCA data required two times morefeatures than the data from public databases for an accurate detection (6 vs 3). No signifi-cant differences in performance were found for different segment lengths, the BER differ-ences were below 0.5-points in all cases. Our results show that VF-detection is morechallenging for OHCA data than for data from public databases, and that accurate VF-detection is possible with segments as short as 4-s

    Optimal Multi-Stage Arrhythmia Classification Approach

    Get PDF
    Arrhythmia constitutes a problem with the rate or rhythm of the heartbeat, and an early diagnosis is essential for the timely inception of successful treatment. We have jointly optimized the entire multi-stage arrhythmia classification scheme based on 12-lead surface ECGs that attains the accuracy performance level of professional cardiologists. The new approach is comprised of a three-step noise reduction stage, a novel feature extraction method and an optimal classification model with finely tuned hyperparameters. We carried out an exhaustive study comparing thousands of competing classification algorithms that were trained on our proprietary, large and expertly labeled dataset consisting of 12-lead ECGs from 40,258 patients with four arrhythmia classes: atrial fibrillation, general supraventricular tachycardia, sinus bradycardia and sinus rhythm including sinus irregularity rhythm. Our results show that the optimal approach consisted of Low Band Pass filter, Robust LOESS, Non Local Means smoothing, a proprietary feature extraction method based on percentiles of the empirical distribution of ratios of interval lengths and magnitudes of peaks and valleys, and Extreme Gradient Boosting Tree classifier, achieved an F1-Score of 0.988 on patients without additional cardiac conditions. The same noise reduction and feature extraction methods combined with Gradient Boosting Tree classifier achieved an F1-Score of 0.97 on patients with additional cardiac conditions. Our method achieved the highest classification accuracy (average 10-fold cross-validation F1-Score of 0.992) using an external validation data, MIT-BIH arrhythmia database. The proposed optimal multi-stage arrhythmia classification approach can dramatically benefit automatic ECG data analysis by providing cardiologist level accuracy and robust compatibility with various ECG data sources
    • …
    corecore