2,539 research outputs found

    Quantifying the Effects of Knee Joint Biomechanics on Acoustical Emissions

    Get PDF
    The knee is one of the most injured body parts, causing 18 million patients to be seen in clinics every year. Because the knee is a weight-bearing joint, it is prone to pathologies such as osteoarthritis and ligamentous injuries. Existing technologies for monitoring knee health can provide accurate assessment and diagnosis for acute injuries. However, they are mainly confined to clinical or laboratory settings only, time-consuming, expensive, and not well-suited for longitudinal monitoring. Developing a novel technology for joint health assessment beyond the clinic can further provide insights on the rehabilitation process and quantitative usage of the knee joint. To better understand the underlying properties and fundamentals of joint sounds, this research will investigate the relationship between the changes in the knee joint structure (i.e. structural damage and joint contact force) and the JAEs while developing novel techniques for analyzing these sounds. We envision that the possibility of quantifying joint structure and joint load usage from these acoustic sensors would advance the potential of JAE as the next biomarker of joint health that can be captured with wearable technology. First, we developed a novel processing technique for JAEs that quantify on the structural change of the knee from injured athletes and human lower-limb cadaver models. Second, we quantified whether JAEs can detect the increase in the mechanical stress on the knee joint using an unsupervised graph mining algorithm. Lastly, we quantified the directional bias of the load distribution between medial and lateral compartment using JAEs. Understanding and monitoring the quantitative usage of knee loads in daily activities can broaden the implications for longitudinal joint health monitoring.Ph.D

    Structural Damage Classification using Support Vector Machines

    Get PDF
    In this research, a methodology to classify crack and corrosion metallic damages using a time-frequency representation method and support vector machines is investigated. Piezoelectric ceramic actuators are utilized to generate guided wave signals on a set of aluminum beam coupons with different damage features, such as types, locations, and thicknesses. The short-time Fourier transform is applied to analyze the measured signals. For damage classification, the spectrograms obtained from finite element models are employed to train a two-class support vector machine learning classifier. The classifier is able to correctly classify different types of damages based upon the measured signals collected from the unknown damage sources. A multiple-class classifier is also generated to predict the damage extent of crack samples

    Detection and classification of non-stationary signals using sparse representations in adaptive dictionaries

    Get PDF
    Automatic classification of non-stationary radio frequency (RF) signals is of particular interest in persistent surveillance and remote sensing applications. Such signals are often acquired in noisy, cluttered environments, and may be characterized by complex or unknown analytical models, making feature extraction and classification difficult. This thesis proposes an adaptive classification approach for poorly characterized targets and backgrounds based on sparse representations in non-analytical dictionaries learned from data. Conventional analytical orthogonal dictionaries, e.g., Short Time Fourier and Wavelet Transforms, can be suboptimal for classification of non-stationary signals, as they provide a rigid tiling of the time-frequency space, and are not specifically designed for a particular signal class. They generally do not lead to sparse decompositions (i.e., with very few non-zero coefficients), and use in classification requires separate feature selection algorithms. Pursuit-type decompositions in analytical overcomplete (non-orthogonal) dictionaries yield sparse representations, by design, and work well for signals that are similar to the dictionary elements. The pursuit search, however, has a high computational cost, and the method can perform poorly in the presence of realistic noise and clutter. One such overcomplete analytical dictionary method is also analyzed in this thesis for comparative purposes. The main thrust of the thesis is learning discriminative RF dictionaries directly from data, without relying on analytical constraints or additional knowledge about the signal characteristics. A pursuit search is used over the learned dictionaries to generate sparse classification features in order to identify time windows that contain a target pulse. Two state-of-the-art dictionary learning methods are compared, the K-SVD algorithm and Hebbian learning, in terms of their classification performance as a function of dictionary training parameters. Additionally, a novel hybrid dictionary algorithm is introduced, demonstrating better performance and higher robustness to noise. The issue of dictionary dimensionality is explored and this thesis demonstrates that undercomplete learned dictionaries are suitable for non-stationary RF classification. Results on simulated data sets with varying background clutter and noise levels are presented. Lastly, unsupervised classification with undercomplete learned dictionaries is also demonstrated in satellite imagery analysis

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 4th International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2005, held 29-31 October 2005, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    UNMANNED UNDERWATER VEHICLE MISSION SYSTEMS ENGINEERING PRODUCT REUSE RETURN ON INVESTMENT

    Get PDF
    Unmanned Underwater Vehicles (UUVs) accomplish a wide spectrum of missions ranging from generic to extremely specific. Although not all UUVs can accomplish all missions, there is significant replication of the requirements and the systems across the family of UUVs. The design process for UUVs balances operational requirements, design feasibility, expected performance, schedule, budget, and ultimate system and life-cycle costs. The U.S. Department of Defense does not have an established process for developing UUV Systems Engineering (SE) requirements. This results in duplicative development efforts adding unnecessary costs to UUV programs. This paper investigates the SE requirements and interfaces across various UUV mission spaces to establish complexity and reuse weights. A Constructive SE Cost Model (COSYSMO) is applied to determine the cost advantage to reuse SE requirements for UUV assets across different mission spaces to determine an overall SE effort. Requirements from the baseline mission are then compared with requirements from eight other missions, and the efforts compared to determine a return on investment (ROI) for using previous missions as a baseline. Utilizing the resulting UUV requirement cost versus ROI can serve as a starting point for future UUV program concept design.Civilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyApproved for public release. Distribution is unlimited
    • …
    corecore