969 research outputs found

    Virtual 3D Reconstruction of Archaeological Pottery Using Coarse Registration

    Get PDF
    The 3D reconstruction of objects has not only improved visualisation of digitised objects, it has helped researchers to actively carry out archaeological pottery. Reconstructing pottery is significant in archaeology but is challenging task among practitioners. For one, excavated potteries are hardly complete to provide exhaustive and useful information, hence archaeologists attempt to reconstruct them with available tools and methods. It is also challenging to apply existing reconstruction approaches in archaeological documentation. This limitation makes it difficult to carry out studies within a reasonable time. Hence, interest has shifted to developing new ways of reconstructing archaeological artefacts with new techniques and algorithms. Therefore, this study focuses on providing interventions that will ease the challenges encountered in reconstructing archaeological pottery. It applies a data acquisition approach that uses a 3D laser scanner to acquire point cloud data that clearly show the geometric and radiometric properties of the object’s surface. The acquired data is processed to remove noise and outliers before undergoing a coarse-to-fine registration strategy which involves detecting and extracting keypoints from the point clouds and estimating descriptions with them. Additionally, correspondences are estimated between point pairs, leading to a pairwise and global registration of the acquired point clouds. The peculiarity of the approach of this thesis is in its flexibility due to the peculiar nature of the data acquired. This improves the efficiency, robustness and accuracy of the approach. The approach and findings show that the use of real 3D dataset can attain good results when used with right tools. High resolution lenses and accurate calibration help to give accurate results. While the registration accuracy attained in the study lies between 0.08 and 0.14 mean squared error for the data used, further studies will validate this result. The results obtained are nonetheless useful for further studies in 3D pottery reassembly

    Spatial patterns of Moroccan transhumance: Geoarchaeological field work & spatial analysis of herder sites in the High Atlas Mountains of Morocco

    Get PDF
    Seit geraumer Zeit, nicht zuletzt unter dem Einfluss des Klimawandels, nimmt das Interesse der Ethnologie an den Methoden einiger Nachbardisziplinen im Sinne der interdisziplinĂ€ren Zusammenarbeit zu. Hierbei spielen die Geographie und in besonderem Maße fernerkundliche Methoden sowie rĂ€umliche Analysen eine herausragende Rolle. Ebenso wie, im Kontext diachroner Analysen, die Methoden der GeoarchĂ€ologie zur Erfassung der lokalen Historie. Um diese Forschungsansatze den Studierenden der Ethnologie nahezubringen habe ich Frau Mirijam Zickel gebeten mir ihre Masterarbeit, die von Herrn Prof. Dr. Georg Bareth und Frau Dr. Astrid Röpke betreut und mit dem zweiten Platz des Dr. Prill Preises 2020 der Gesellschaft fĂŒr Erdkunde ausgezeichnet wurde, in leicht verĂ€nderter Form, fĂŒr meine Reihe zur VerfĂŒgung zu stellen. Nach einer allgemeinen Darstellung der Methoden der Fernerkundung zeigt Frau Zickel am Beispiel transhumanter Ait Atta auf deren Sommerweiden im Hohen Atlas, wie durch die rĂ€umliche Analyse von Fernerkundungsdaten und unter Einbezug von geoarchĂ€ologischen Informationen, Erkenntnisse uber die AufenthaltsplĂ€tze der Nomaden im Sommerlager gewonnen werden können. Hierbei zeigt sich, dass die Viehpferche der Nomaden eine zentrale Rolle fĂŒr die rĂ€umliche und zeitliche Erfassung von Transhumanz im Untersuchungsgebiet spielen können. Weiterhin ist es ihr gelungen, mit unterschiedlichen, einander ergĂ€nzenden Methoden der Fernerkundung die ökologische Situation des Gebietes und insbesondere der Pferchstandorte zu beleuchten. Ihre Arbeit eröffnet eine neue Perspektive, um die Mensch-Umweltbeziehung im semiariden Bergland von Marokko zu erfassen

    Similarity reasoning for local surface analysis and recognition

    Get PDF
    This thesis addresses the similarity assessment of digital shapes, contributing to the analysis of surface characteristics that are independent of the global shape but are crucial to identify a model as belonging to the same manufacture, the same origin/culture or the same typology (color, common decorations, common feature elements, compatible style elements, etc.). To face this problem, the interpretation of the local surface properties is crucial. We go beyond the retrieval of models or surface patches in a collection of models, facing the recognition of geometric patterns across digital models with different overall shape. To address this challenging problem, the use of both engineered and learning-based descriptions are investigated, building one of the first contributions towards the localization and identification of geometric patterns on digital surfaces. Finally, the recognition of patterns adds a further perspective in the exploration of (large) 3D data collections, especially in the cultural heritage domain. Our work contributes to the definition of methods able to locally characterize the geometric and colorimetric surface decorations. Moreover, we showcase our benchmarking activity carried out in recent years on the identification of geometric features and the retrieval of digital models completely characterized by geometric or colorimetric patterns

    Report on shape analysis and matching and on semantic matching

    No full text
    In GRAVITATE, two disparate specialities will come together in one working platform for the archaeologist: the fields of shape analysis, and of metadata search. These fields are relatively disjoint at the moment, and the research and development challenge of GRAVITATE is precisely to merge them for our chosen tasks. As shown in chapter 7 the small amount of literature that already attempts join 3D geometry and semantics is not related to the cultural heritage domain. Therefore, after the project is done, there should be a clear ‘before-GRAVITATE’ and ‘after-GRAVITATE’ split in how these two aspects of a cultural heritage artefact are treated.This state of the art report (SOTA) is ‘before-GRAVITATE’. Shape analysis and metadata description are described separately, as currently in the literature and we end the report with common recommendations in chapter 8 on possible or plausible cross-connections that suggest themselves. These considerations will be refined for the Roadmap for Research deliverable.Within the project, a jargon is developing in which ‘geometry’ stands for the physical properties of an artefact (not only its shape, but also its colour and material) and ‘metadata’ is used as a general shorthand for the semantic description of the provenance, location, ownership, classification, use etc. of the artefact. As we proceed in the project, we will find a need to refine those broad divisions, and find intermediate classes (such as a semantic description of certain colour patterns), but for now the terminology is convenient – not least because it highlights the interesting area where both aspects meet.On the ‘geometry’ side, the GRAVITATE partners are UVA, Technion, CNR/IMATI; on the metadata side, IT Innovation, British Museum and Cyprus Institute; the latter two of course also playing the role of internal users, and representatives of the Cultural Heritage (CH) data and target user’s group. CNR/IMATI’s experience in shape analysis and similarity will be an important bridge between the two worlds for geometry and metadata. The authorship and styles of this SOTA reflect these specialisms: the first part (chapters 3 and 4) purely by the geometry partners (mostly IMATI and UVA), the second part (chapters 5 and 6) by the metadata partners, especially IT Innovation while the joint overview on 3D geometry and semantics is mainly by IT Innovation and IMATI. The common section on Perspectives was written with the contribution of all

    Persistence Bag-of-Words for Topological Data Analysis

    Full text link
    Persistent homology (PH) is a rigorous mathematical theory that provides a robust descriptor of data in the form of persistence diagrams (PDs). PDs exhibit, however, complex structure and are difficult to integrate in today's machine learning workflows. This paper introduces persistence bag-of-words: a novel and stable vectorized representation of PDs that enables the seamless integration with machine learning. Comprehensive experiments show that the new representation achieves state-of-the-art performance and beyond in much less time than alternative approaches.Comment: Accepted for the Twenty-Eight International Joint Conference on Artificial Intelligence (IJCAI-19). arXiv admin note: substantial text overlap with arXiv:1802.0485

    A 3D Digital Approach to the Stylistic and Typo-Technological Study of Small Figurines from Ayia Irini, Cyprus

    Get PDF
    The thesis aims to develop a 3D digital approach to the stylistic and typo-technological study of coroplastic, focusing on small figurines. The case study to test the method is a sample of terracotta statuettes from an assemblage of approximately 2000 statues and figurines found at the beginning of the 20th century in a rural open-air sanctuary at Ayia Irini (Cyprus) by the archaeologists of the Swedish Cyprus Expedition. The excavators identified continuity of worship at the sanctuary from the Late Cypriot III (circa 1200 BC) to the end of the Cypro-Archaic II period (ca. 475 BC). They attributed the small figurines to the Cypro-Archaic I-II. Although the excavation was one of the first performed through the newly established stratigraphic method, the archaeologists studied the site and its material following a traditional, merely qualitative approach. Theanalysis of the published results identified a classification of the material with no-clear-cut criteria, and their overlap between types highlights ambiguities in creating groups and classes. Similarly, stratigraphic arguments and different opinions among archaeologists highlight the need for revising. Moreover, pastlegislation allowed the excavators to export half of the excavated antiquities, creating a dispersion of the assemblage. Today, the assemblage is still partly exhibited at the Cyprus Museum in Nicosia and in four different museums in Sweden. Such a setting prevents to study, analyse and interpret the assemblageholistically. This research proposes a 3D chaĂźne opĂ©ratoire methodology to study the collection’s small terracotta figurines, aiming to understand the context’s function and social role as reflected by the classification obtained with the 3D digital approach. The integration proposed in this research of traditional archaeological studies, and computer-assisted investigation based on quantitative criteria, identified and defined with 3D measurements and analytical investigations, is adopted as a solution to the biases of a solely qualitative approach. The 3D geometric analysis of the figurines focuses on the objects’ shape and components, mode of manufacture, level of expertise, specialisation or skills of the craftsman and production techniques. The analysis leads to the creation of classes of artefacts which allow archaeologists to formulate hypotheses on the production process, identify a common production (e.g., same hand, same workshop) and establish a relative chronological sequence. 3D reconstruction of the excavation’s area contributes to the virtual re-unification of the assemblage for its holistic study, the relative chronological dating of the figurines and the interpretation of their social and ritual purposes. The results obtained from the selected sample prove the efficacy of the proposed 3D approach and support the expansion of the analysis to the whole assemblage, and possibly initiate quantitative and systematic studies on Cypriot coroplastic production

    Development of Mining Sector Applications for Emerging Remote Sensing and Deep Learning Technologies

    Get PDF
    This thesis uses neural networks and deep learning to address practical, real-world problems in the mining sector. The main focus is on developing novel applications in the area of object detection from remotely sensed data. This area has many potential mining applications and is an important part of moving towards data driven strategic decision making across the mining sector. The scientific contributions of this research are twofold; firstly, each of the three case studies demonstrate new applications which couple remote sensing and neural network based technologies for improved data driven decision making. Secondly, the thesis presents a framework to guide implementation of these technologies in the mining sector, providing a guide for researchers and professionals undertaking further studies of this type. The first case study builds a fully connected neural network method to locate supporting rock bolts from 3D laser scan data. This method combines input features from the remote sensing and mobile robotics research communities, generating accuracy scores up to 22% higher than those found using either feature set in isolation. The neural network approach also is compared to the widely used random forest classifier and is shown to outperform this classifier on the test datasets. Additionally, the algorithms’ performance is enhanced by adding a confusion class to the training data and by grouping the output predictions using density based spatial clustering. The method is tested on two datasets, gathered using different laser scanners, in different types of underground mines which have different rock bolting patterns. In both cases the method is found to be highly capable of detecting the rock bolts with recall scores of 0.87-0.96. The second case study investigates modern deep learning for LiDAR data. Here, multiple transfer learning strategies and LiDAR data representations are examined for the task of identifying historic mining remains. A transfer learning approach based on a Lunar crater detection model is used, due to the task similarities between both the underlying data structures and the geometries of the objects to be detected. The relationship between dataset resolution and detection accuracy is also examined, with the results showing that the approach is capable of detecting pits and shafts to a high degree of accuracy with precision and recall scores between 0.80-0.92, provided the input data is of sufficient quality and resolution. Alongside resolution, different LiDAR data representations are explored, showing that the precision-recall balance varies depending on the input LiDAR data representation. The third case study creates a deep convolutional neural network model to detect artisanal scale mining from multispectral satellite data. This model is trained from initialisation without transfer learning and demonstrates that accurate multispectral models can be built from a smaller training dataset when appropriate design and data augmentation strategies are adopted. Alongside the deep learning model, novel mosaicing algorithms are developed both to improve cloud cover penetration and to decrease noise in the final prediction maps. When applied to the study area, the results from this model provide valuable information about the expansion, migration and forest encroachment of artisanal scale mining in southwestern Ghana over the last four years. Finally, this thesis presents an implementation framework for these neural network based object detection models, to generalise the findings from this research to new mining sector deep learning tasks. This framework can be used to identify applications which would benefit from neural network approaches; to build the models; and to apply these algorithms in a real world environment. The case study chapters confirm that the neural network models are capable of interpreting remotely sensed data to a high degree of accuracy on real world mining problems, while the framework guides the development of new models to solve a wide range of related challenges

    Recognition of feature curves on 3D shapes using an algebraic approach to Hough transforms

    Get PDF
    Feature curves are largely adopted to highlight shape features, such as sharp lines, or to divide surfaces into meaningful segments, like convex or concave regions. Extracting these curves is not sufficient to convey prominent and meaningful information about a shape. We have first to separate the curves belonging to features from those caused by noise and then to select the lines, which describe non-trivial portions of a surface. The automatic detection of such features is crucial for the identification and/or annotation of relevant parts of a given shape. To do this, the Hough transform (HT) is a feature extraction technique widely used in image analysis, computer vision and digital image processing, while, for 3D shapes, the extraction of salient feature curves is still an open problem. Thanks to algebraic geometry concepts, the HT technique has been recently extended to include a vast class of algebraic curves, thus proving to be a competitive tool for yielding an explicit representation of the diverse feature lines equations. In the paper, for the first time we apply this novel extension of the HT technique to the realm of 3D shapes in order to identify and localize semantic features like patterns, decorations or anatomical details on 3D objects (both complete and fragments), even in the case of features partially damaged or incomplete. The method recognizes various features, possibly compound, and it selects the most suitable feature profiles among families of algebraic curves

    A Survey of Data Mining Techniques for Smart Museum Applications

    Get PDF
    This research aims to find out what data mining techniques are effectively implemented in museums and what application trends are currently being used to improve museum performance towards modern museums based on intelligent system technology. The review was carried out on a number of articles found in journals and proceedings in the 2004-2020 period. It is found that the majority of data mining techniques are implemented in museum virtual guide applications, recommender systems, collection clustering and classification system, and   visitor behaviour prediction application. Data classification, clustering, and prediction technique commonly used for museum application.  Collections with historical and artistic value  contain a lot of knowledge making data mining an important technique to be included in various applications in museums so that they can have an impact on the achievement of museum goals not only in the fields of education and culture but also economics and business

    ANCIENT MINING LANDSCAPES AND HABITATIVE SCENERIES IN THE URBAN AREA OF CENTOCELLE: GEOMATIC APPLICATIONS FOR THEIR IDENTIFICATION, MEASUREMENT, DOCUMENTATION AND MONITORING

    Get PDF
    This study, focused on the Archaeological Park of Centocelle, was carried out to test the functionality of different geomatic products for the identification and monitoring of complex archaeological evidences in urban areas. The method proposes a better knowledge of the archaeological context as a tool to favour a better protection, allowing the establishment of limits to urban enlargement in areas of respect. The test area is chosen because of the combined presence of hypogeal evidences related to Roman and pre-Roman exploitation of local litotypes and for the dense presence of archaeological vestiges at its surface, related to the inhabitation function of the zone in a period contemporaneous to the beginning of the quarrying activities. The methods used are the digital photogrammetry, 3D modelling, remote sensing interpretation and digital cartography. The protocol is then customized for the peculiarities of the area under study, considering both the underground structures and the ones at the surface. Archaeological features are identified by processing optical and SAR dataset to enhance the contrast of archaeological features from the background. Historical and recent DSM have been then compared to evaluate the evolutions of local topography. Concerning the study of the subterranean quarrying system in the area, a 3D model of one gallery was produced, with the aim to understand the type of ancient exploitation. A DTM of the toolmarks was then produced to understand the technological skills used for the exploitation of the local tuff and used as an indirect proof for chronological interpretation. A final trial of PSInSAR was addressed to test the method for monitoring the hypogeal levels. Several field prospections were executed, in order to first set the method properly and then validate the results
    • 

    corecore