421 research outputs found

    Decoding of walking kinematics from non-invasively acquired electroencephalographic signals in stroke patients

    Get PDF
    Our group has recently shown the feasibility of decoding kinematics of controlled walking from the lower frequency range of electroencephalographic (EEG) signals during a precision walking task. Here, we turn our attention to stroke survivors who have had lesions resulting in hemiparetic gait. We recorded the EEG of stroke recovery patients during a precision treadmill walking task while tracking bilaterally the kinematics of the hips, knees, and ankles. In offline analyses, we applied a Wiener Filter and two unscented Kalman filters of 1st and 10th orders to predict estimates of the kinematic parameters from scalp EEG. Decoding accuracies from four patients who have had cortical and subcortical strokes were comparable with previous studies in healthy subjects. With improved decoding of EEG signals from damaged brains, we hope we can soon correlate activity to more intentional and normal-form walking that can guide users of a powered lower-body prosthetic or exoskeleton

    Cortical motor prosthetics: the development and use for paralysis

    Full text link
    The emerging research field of Brain Computer Interfaces (BCIs) has created an invasive type of BCI, the Cortical Motor Prosthetic (CMP) or invasive BCI (iBCI). The goal is to restore lost motor function via prosthetic control signals to individuals who have long-term paralysis. The development of the CMP consists of two major entities: the implantable, chronic microelectrode array (MEA) and the data acquisition hardware (DAQ) specifically the decoder. The iBCI's function is to record primary motor cortex (M1) neural signals via chronic MEA and translate into a motor command via decoder extraction algorithms that can control a prosthetic to perform the intended movement. The ultimate goal is to use the iBCI as a clinical tool for individuals with long-term paralysis to regain lost motor functioning. Thus, the iBCI is a beacon of hope that could enable individuals to independently perform daily activities and interact once again with their environment. This review seeks to accomplish two major goals. First, elaborate upon the development of the iBCI and focus on the advancements and efforts to create a viable system. Second, illustrate the exciting improvements in the iBCI's use for reaching and grasping actions and in human clinical trials. The ultimate goal is to use the iBCI as a clinical tool for individuals with long-term paralysis to regain movement control. Despite the promise in the iBCI, many challenges, which are described in this review, persist and must be overcome before the iBCI can be a viable tool for individuals with long-term. iBCI future endeavors aim to overcome the challenges and develop an efficient system enhancing the lives of many living with paralysis. Standard terms: Intracortical Brain Computer Interface (iBCI), Intracortical Brain Machine Interface (iBMI), Cortical Motor Prosthetic (CMP), Neuromotor Prostheses (NMP), Intracortical Neural Prosthetics, Invasive Neural Prosthetic all terms used interchangeabl

    Neurosurgical Ultrasound Pose Estimation Using Image-Based Registration and Sensor Fusion - A Feasibility Study

    Get PDF
    Modern neurosurgical procedures often rely on computer-assisted real-time guidance using multiple medical imaging modalities. State-of-the-art commercial products enable the fusion of pre-operative with intra-operative images (e.g., magnetic resonance [MR] with ultrasound [US] images), as well as the on-screen visualization of procedures in progress. In so doing, US images can be employed as a template to which pre-operative images can be registered, to correct for anatomical changes, to provide live-image feedback, and consequently to improve confidence when making resection margin decisions near eloquent regions during tumour surgery. In spite of the potential for tracked ultrasound to improve many neurosurgical procedures, it is not widely used. State-of-the-art systems are handicapped by optical tracking’s need for consistent line-of-sight, keeping tracked rigid bodies clean and rigidly fixed, and requiring a calibration workflow. The goal of this work is to improve the value offered by co-registered ultrasound images without the workflow drawbacks of conventional systems. The novel work in this thesis includes: the exploration and development of a GPU-enabled 2D-3D multi-modal registration algorithm based on the existing LC2 metric; and the use of this registration algorithm in the context of a sensor and image-fusion algorithm. The work presented here is a motivating step in a vision towards a heterogeneous tracking framework for image-guided interventions where the knowledge from intraoperative imaging, pre-operative imaging, and (potentially disjoint) wireless sensors in the surgical field are seamlessly integrated for the benefit of the surgeon. The technology described in this thesis, inspired by advances in robot localization demonstrate how inaccurate pose data from disjoint sources can produce a localization system greater than the sum of its parts

    Methods to Improve the Prediction Accuracy and Performance of Ensemble Models

    Get PDF
    The application of ensemble predictive models has been an important research area in predicting medical diagnostics, engineering diagnostics, and other related smart devices and related technologies. Most of the current predictive models are complex and not reliable despite numerous efforts in the past by the research community. The performance accuracy of the predictive models have not always been realised due to many factors such as complexity and class imbalance. Therefore there is a need to improve the predictive accuracy of current ensemble models and to enhance their applications and reliability and non-visual predictive tools. The research work presented in this thesis has adopted a pragmatic phased approach to propose and develop new ensemble models using multiple methods and validated the methods through rigorous testing and implementation in different phases. The first phase comprises of empirical investigations on standalone and ensemble algorithms that were carried out to ascertain their performance effects on complexity and simplicity of the classifiers. The second phase comprises of an improved ensemble model based on the integration of Extended Kalman Filter (EKF), Radial Basis Function Network (RBFN) and AdaBoost algorithms. The third phase comprises of an extended model based on early stop concepts, AdaBoost algorithm, and statistical performance of the training samples to minimize overfitting performance of the proposed model. The fourth phase comprises of an enhanced analytical multivariate logistic regression predictive model developed to minimize the complexity and improve prediction accuracy of logistic regression model. To facilitate the practical application of the proposed models; an ensemble non-invasive analytical tool is proposed and developed. The tool links the gap between theoretical concepts and practical application of theories to predict breast cancer survivability. The empirical findings suggested that: (1) increasing the complexity and topology of algorithms does not necessarily lead to a better algorithmic performance, (2) boosting by resampling performs slightly better than boosting by reweighting, (3) the prediction accuracy of the proposed ensemble EKF-RBFN-AdaBoost model performed better than several established ensemble models, (4) the proposed early stopped model converges faster and minimizes overfitting better compare with other models, (5) the proposed multivariate logistic regression concept minimizes the complexity models (6) the performance of the proposed analytical non-invasive tool performed comparatively better than many of the benchmark analytical tools used in predicting breast cancers and diabetics ailments. The research contributions to ensemble practice are: (1) the integration and development of EKF, RBFN and AdaBoost algorithms as an ensemble model, (2) the development and validation of ensemble model based on early stop concepts, AdaBoost, and statistical concepts of the training samples, (3) the development and validation of predictive logistic regression model based on breast cancer, and (4) the development and validation of a non-invasive breast cancer analytic tools based on the proposed and developed predictive models in this thesis. To validate prediction accuracy of ensemble models, in this thesis the proposed models were applied in modelling breast cancer survivability and diabetics’ diagnostic tasks. In comparison with other established models the simulation results of the models showed improved predictive accuracy. The research outlines the benefits of the proposed models, whilst proposes new directions for future work that could further extend and improve the proposed models discussed in this thesis

    Brain-Machine Interface for Reaching: Accounting for Target Size, Multiple Motor Plans, and Bimanual Coordination

    Get PDF
    <p>Brain-machine interfaces (BMIs) offer the potential to assist millions of people worldwide suffering from immobility due to loss of limbs, paralysis, and neurodegenerative diseases. BMIs function by decoding neural activity from intact cortical brain regions in order to control external devices in real-time. While there has been exciting progress in the field over the past 15 years, the vast majority of the work has focused on restoring of motor function of a single limb. In the work presented in this thesis, I first investigate the expanded role of primary sensory (S1) and motor (M1) cortex during reaching movements. By varying target size during reaching movements, I discovered the cortical correlates of the speed-accuracy tradeoff known as Fitts' law. Similarly, I analyzed cortical motor processing during tasks where the motor plan is quickly reprogrammed. In each study, I found that parameters relevant to the reach, such as target size or alternative movement plans, could be extracted by neural decoders in addition to simple kinematic parameters such as velocity and position. As such, future BMI functionality could expand to account for relevant sensory information and reliably decode intended reach trajectories, even amidst transiently considered alternatives.</p><p> The second portion of my thesis work was the successful development of the first bimanual brain-machine interface. To reach this goal, I expanded the neural recordings system to enable bilateral, multi-site recordings from approximately 500 neurons simultaneously. In addition, I upgraded the experiment to feature a realistic virtual reality end effector, customized primate chair, and eye tracking system. Thirdly, I modified the tuning function of the unscented Kalman filter (UKF) to conjointly represent both arms in a single 4D model. As a result of widespread cortical plasticity in M1, S1, supplementary motor area (SMA), and posterior parietal cortex (PPC), the bimanual BMI enabled rhesus monkeys to simultaneously control two virtual limbs without any movement of their own body. I demonstrate the efficacy of the bimanual BMI in both a subject with prior task training using joysticks and a subject naĂŻve to the task altogether, which simulates a common clinical scenario. The neural decoding algorithm was selected as a result of a methodical comparison between various neural decoders and decoder settings. I lastly introduce a two-stage switching model with a classify step and predict step which was designed and tested to generalize decoding strategies to include both unimanual and bimanual movements.</p>Dissertatio

    Sci Transl Med

    Get PDF
    Brain-machine interfaces (BMIs) are artificial systems that aim to restore sensation and movement to paralyzed patients. So far, BMIs have enabled only one arm to be moved at a time. Control of bimanual arm movements remains a major challenge. We have developed and tested a bimanual BMI that enables rhesus monkeys to control two avatar arms simultaneously. The bimanual BMI was based on the extracellular activity of 374 to 497 neurons recorded from several frontal and parietal cortical areas of both cerebral hemispheres. Cortical activity was transformed into movements of the two arms with a decoding algorithm called a fifth-order unscented Kalman filter (UKF). The UKF was trained either during a manual task performed with two joysticks or by having the monkeys passively observe the movements of avatar arms. Most cortical neurons changed their modulation patterns when both arms were engaged simultaneously. Representing the two arms jointly in a single UKF decoder resulted in improved decoding performance compared with using separate decoders for each arm. As the animals' performance in bimanual BMI control improved over time, we observed widespread plasticity in frontal and parietal cortical areas. Neuronal representation of the avatar and reach targets was enhanced with learning, whereas pairwise correlations between neurons initially increased and then decreased. These results suggest that cortical networks may assimilate the two avatar arms through BMI control. These findings should help in the design of more sophisticated BMIs capable of enabling bimanual motor control in human patients.F31 NS081931/NS/NINDS NIH HHS/United StatesDP1MH099903/DP/NCCDPHP CDC HHS/United StatesR01NS073952/NS/NINDS NIH HHS/United StatesDP1 MH099903/MH/NIMH NIH HHS/United StatesR01 NS073952/NS/NINDS NIH HHS/United States2014-11-06T00:00:00Z24197735PMC3967722vault:237

    EEG Cortical Source Feature based Hand Kinematics Decoding using Residual CNN-LSTM Neural Network

    Full text link
    Motor kinematics decoding (MKD) using brain signal is essential to develop Brain-computer interface (BCI) system for rehabilitation or prosthesis devices. Surface electroencephalogram (EEG) signal has been widely utilized for MKD. However, kinematic decoding from cortical sources is sparsely explored. In this work, the feasibility of hand kinematics decoding using EEG cortical source signals has been explored for grasp and lift task. In particular, pre-movement EEG segment is utilized. A residual convolutional neural network (CNN) - long short-term memory (LSTM) based kinematics decoding model is proposed that utilizes motor neural information present in pre-movement brain activity. Various EEG windows at 50 ms prior to movement onset, are utilized for hand kinematics decoding. Correlation value (CV) between actual and predicted hand kinematics is utilized as performance metric for source and sensor domain. The performance of the proposed deep learning model is compared in sensor and source domain. The results demonstrate the viability of hand kinematics decoding using pre-movement EEG cortical source data

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs
    • …
    corecore