9 research outputs found

    Power and energy management of multiple energy storage systems in electric vehicles

    Get PDF
    This dissertation contributes to the problem description of managing power and energy of multiple energy sources for electric vehicle power system architectures. The area of power and energy management in the application domain of electric vehicles is relatively new and encompasses several different disciplines. Primarily, the challenges in electric vehicles having multiple energy storage systems lies in managing the energy expenditure, determining the proportional power splits and establishing methods to interface between the energy systems so as to meet the demands of the vehicle propulsion and auxiliary load requirements. In this work, an attempt has been made to provide a new perspective to the problem description of electric vehicle power and energy management. The overall approach to the problem borrows from the basic principles found in conventional management methodology. The analogy between well-known hierarchical management concepts and power and energy management under timing constraints in a general task-graph is exploited to form a well-defined modular power and energy management implementation structure. The proposed methodology permits this multidisciplinary problem to be approached systematically. The thesis introduces a modular power and energy management system (MPEMS). Operation of the M-PEMS is structured as tri-level hierarchical process shells. An Energy Management Shell (EMS) handles the long-term decisions of energy usage in relation to the longitudinal dynamics of the vehicle while processes within a Power Management Shell (PMS) handles the fast decisions to determine power split ratios between multiple energy sources. Finally, a Power Electronics Shell (PES) encompasses the essential power interfacing circuitry as well as the generation of low-level switching functions. This novel framework is demonstrated with the implementation of a power and energy management system for a dual-source electric vehicle powered by lead acid batteries and ultracapacitors. A series of macro simulations of the energy systems validated against practical tests were performed to establish salient operating parameters. These parameters were then applied to the M-PEMS design of a demonstrator vehicle to determine both the general effectiveness of a power and energy management scheme and to support the validity of the new framework. Implementation of the modular blocks that composes the entire system architecture is described with emphasis given to the power electronics shell infrastructure design. The modular structure approach is design-implementation oriented, with the objective of contributing towards a more unified description of the electric vehicle power and energy management problem.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Reference Model for Interoperability of Autonomous Systems

    Get PDF
    This thesis proposes a reference model to describe the components of an Un-manned Air, Ground, Surface, or Underwater System (UxS), and the use of a single Interoperability Building Block to command, control, and get feedback from such vehicles. The importance and advantages of such a reference model, with a standard nomenclature and taxonomy, is shown. We overview the concepts of interoperability and some efforts to achieve common refer-ence models in other areas. We then present an overview of existing un-manned systems, their history, characteristics, classification, and missions. The concept of Interoperability Building Blocks (IBB) is introduced to describe standards, protocols, data models, and frameworks, and a large set of these are analyzed. A new and powerful reference model for UxS, named RAMP, is proposed, that describes the various components that a UxS may have. It is a hierarchical model with four levels, that describes the vehicle components, the datalink, and the ground segment. The reference model is validated by showing how it can be applied in various projects the author worked on. An example is given on how a single standard was capable of controlling a set of heterogeneous UAVs, USVs, and UGVs

    Classification and analysis of failures of ultracapacitors in rail launchers applications

    No full text
    This paper deals with the classification and analysis of failures of ultracapacitors to be used in rail launchers applications with the aim of investigating the influence of strong impulsive electromagnetic fields on their performance. Considering the very harsh environment present in rail launchers applications, a reliability analysis of components of the launch mass is very important to assess the failure modes and the relevant effects. To this purpose, we introduced a Failure Modes and Effects analysis methodology (FMEA) to ensure an optimal design and material choice as well as to evaluate the impact of all possible failure mechanisms and causes on the ultracapacitors. This approach allows to reduce or possibly eliminate the effects of potential failure modes before the launch mass design completion and before failures occur during the launch

    Cyber-Human Systems, Space Technologies, and Threats

    Get PDF
    CYBER-HUMAN SYSTEMS, SPACE TECHNOLOGIES, AND THREATS is our eighth textbook in a series covering the world of UASs / CUAS/ UUVs / SPACE. Other textbooks in our series are Space Systems Emerging Technologies and Operations; Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD); Disruptive Technologies with applications in Airline, Marine, Defense Industries; Unmanned Vehicle Systems & Operations On Air, Sea, Land; Counter Unmanned Aircraft Systems Technologies and Operations; Unmanned Aircraft Systems in the Cyber Domain: Protecting USA’s Advanced Air Assets, 2nd edition; and Unmanned Aircraft Systems (UAS) in the Cyber Domain Protecting USA’s Advanced Air Assets, 1st edition. Our previous seven titles have received considerable global recognition in the field. (Nichols & Carter, 2022) (Nichols, et al., 2021) (Nichols R. K., et al., 2020) (Nichols R. , et al., 2020) (Nichols R. , et al., 2019) (Nichols R. K., 2018) (Nichols R. K., et al., 2022)https://newprairiepress.org/ebooks/1052/thumbnail.jp

    NASA patent abstracts bibliography: A continuing bibliography. Section 2: Indexes (supplement 45)

    Get PDF
    A subject index is provided for over 5600 patents and patent applications for the period May 1969 through June 1994. Additional indexes list personal authors, corporate authors, contract numbers, NASA case numbers, U.S. patent class numbers, U.S. patent numbers, and NASA accession numbers

    NASA patent abstracts bibliography: A continuing bibliography. Section 2: Indexes (supplement 44)

    Get PDF
    A subject index is provided for over 5500 patents and patent applications for the period May 1969 through December 1993. Additional indexes list personal authors, corporate authors, contract numbers, NASA case numbers, U.S. patent class numbers, U.S. patent numbers, and NASA accession numbers

    NASA patent abstracts bibliography: A continuing bibliography. Section 2: Indexes (supplement 43)

    Get PDF
    A subject index is provided for over 5400 patents and patent applications for the period May 1969 through June 1993. Additional indexes list personal authors, corporate authors, contract numbers, NASA case numbers, U.S. patent class numbers, U.S. patent numbers, and NASA accession numbers

    From test tube to pilot plant, a 50 year history of the Chemical Technology Division at Argonne National Laboratory.

    Full text link
    corecore