134,597 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Joint Visual Denoising and Classification using Deep Learning

    Full text link
    Visual restoration and recognition are traditionally addressed in pipeline fashion, i.e. denoising followed by classification. Instead, observing correlations between the two tasks, for example clearer image will lead to better categorization and vice visa, we propose a joint framework for visual restoration and recognition for handwritten images, inspired by advances in deep autoencoder and multi-modality learning. Our model is a 3-pathway deep architecture with a hidden-layer representation which is shared by multi-inputs and outputs, and each branch can be composed of a multi-layer deep model. Thus, visual restoration and classification can be unified using shared representation via non-linear mapping, and model parameters can be learnt via backpropagation. Using MNIST and USPS data corrupted with structured noise, the proposed framework performs at least 20\% better in classification than separate pipelines, as well as clearer recovered images. The noise model and the reproducible source code is available at {\url{https://github.com/ganggit/jointmodel}}.Comment: 5 pages, 7 figures, ICIP 201

    When Kernel Methods meet Feature Learning: Log-Covariance Network for Action Recognition from Skeletal Data

    Full text link
    Human action recognition from skeletal data is a hot research topic and important in many open domain applications of computer vision, thanks to recently introduced 3D sensors. In the literature, naive methods simply transfer off-the-shelf techniques from video to the skeletal representation. However, the current state-of-the-art is contended between to different paradigms: kernel-based methods and feature learning with (recurrent) neural networks. Both approaches show strong performances, yet they exhibit heavy, but complementary, drawbacks. Motivated by this fact, our work aims at combining together the best of the two paradigms, by proposing an approach where a shallow network is fed with a covariance representation. Our intuition is that, as long as the dynamics is effectively modeled, there is no need for the classification network to be deep nor recurrent in order to score favorably. We validate this hypothesis in a broad experimental analysis over 6 publicly available datasets.Comment: 2017 IEEE Computer Vision and Pattern Recognition (CVPR) Workshop
    • …
    corecore