2,557 research outputs found

    Categories leaf healthiness using RGB spectrum and fuzzy logic

    Get PDF
    In this paper, a general approach is to classify of the green leaf healthiness.Fuzzy logic tool (FuzzyLite 3.2 software) and color features (RGB Spectrum) are used in this experiment.Mean values of primary colors (Red, Green and Blue) channels as input to FIS (Fuzzy Inference System).FIS gives decision whether this part of leaf is healthy, unhealthy or dying.Experimentation is conducted on our own dataset for determining knowledge base, consisting of 40 images of leaves for each category; 20 for training and 20 for testing.The experiment has 4 phases which were data preparation, features extraction, features selection and classification.The experimental results indicate that proposed model achieves a good average classification accuracy which are 85% healthy,95% unhealthy and 100% dying

    Inspection process for dimensioning through images and fuzzy logic

    Get PDF
    This paper presents a hybrid methodology based on a type 1 fuzzy model in singleton version using a 2k factorial design that optimizes the model of the expert system and serves to perform in-line inspection. The factorial design method provides the required database for the creation of the rule base for the fuzzy model and also generates the database to train the expert system. The proposed method was validated in the process of verifying dimensional parameters by means of images compared with the ANFIS and RBFN models which show greater margins of error in the approximation of the function represented by the system compared with the proposed model. The results obtained show that the model has an excellent performance in the prediction and quality control of the industrial process studied when compared with similar expert system techniques as ANFIS and RBFN

    Hyperspectral imaging for diagnosis and quality control in agri-food and industrial sectors

    Get PDF
    Optical spectroscopy has been utilized in various fields of science, industry and medicine, since each substance is discernible from all others by its spectral properties. However, optical spectroscopy traditionally generates information on the bulk properties of the whole sample, and mainly in the agri-food industry some product properties result from the heterogeneity in its composition. This monitoring is considerably more challenging and can be successfully achieved by the so-called hyperspectral imaging technology, which allows the simultaneous determination of the optical spectrum and the spatial location of an object in a surface. In addition, it is a nonintrusive and non-contact technique which gives rise to a great potential for industrial applications and it does not require any particular preparation of the samples, which is a primary concern in food monitoring. This work illustrates an overview of approaches based on this technology to address different problems in agri-food and industrial sectors. The hyperspectral system was originally designed and tested for raw material on-line discrimination, which is a key factor in the input stages of many industrial sectors. The combination of the acquisition of the spectral information across transversal lines while materials are being transported on a conveyor belt, and appropriate image analyses have been successfully validated in the tobacco industry. Lastly, the use of imaging spectroscopy applied to online welding quality monitoring is discussed and compared with traditional spectroscopic approaches in this regard

    Improving field management by machine vision - a review

    Get PDF
    Growing population of people around the world and thus increasing demand to food products as well as high tendency for declining the cost of operations and environmental preserving cares intensify inclination toward the application of variable rate systems for agricultural treatments, in which machine vision as a powerful appliance has been paid vast attention by agricultural researchers and farmers as this technology consumers. Various applications have introduced for machine vision in different fields of agricultural and food industry till now that confirms the high potential of this approach for inspection of different parameters affecting productivity. Computer vision has been utilized for quantification of factors affecting crop growth in field; such as, weed, irrigation, soil quality, plant nutrients and fertilizers in several cases. This paper presents some of these successful applications in addition to representing an introduction to machine vision

    Prediction method of cigarette draw resistance based on correlation analysis

    Full text link
    The cigarette draw resistance monitoring method is incomplete and single, and the lacks correlation analysis and preventive modeling, resulting in substandard cigarettes in the market. To address this problem without increasing the hardware cost, in this paper, multi-indicator correlation analysis is used to predict cigarette draw resistance. First, the monitoring process of draw resistance is analyzed based on the existing quality control framework, and optimization ideas are proposed. In addition, for the three production units, the cut tobacco supply (VE), the tobacco rolling (SE), and the cigarette-forming (MAX), direct and potential factors associated with draw resistance are explored, based on the linear and non-linear correlation analysis. Then, the correlates of draw resistance are used as inputs for the machine learning model, and the predicted values of draw resistance are used as outputs. Finally, this research also innovatively verifies the practical application value of draw resistance prediction: the distribution characteristics of substandard cigarettes are analyzed based on the prediction results, the time interval of substandard cigarettes being produced is determined, the probability model of substandard cigarettes being sampled is derived, and the reliability of the prediction result is further verified by the example. The results show that the prediction model based on correlation analysis has good performance in three months of actual production.Comment: Preprint, submitted to Computers and Electronics in Agriculture. For any suggestions or improvements, please contact me directly by e-mai

    Optimasi Conjugate Gradient pada Backpropagation Neural Network untuk Deteksi Kualitas Daun Tembakau

    Full text link
    Tembakau merupakan komoditi perkebunan yang memiliki nilai ekonomi tingg, teutama sebagai bahan utama rokok. Produksi rokok memberikan pengaruh pada perekonomian di beberapa negara. Sebelum proses produksi rokok, diperlukan klasifikasi kualitas daun tembakau agar mendapatkan komposisi bahan baku rokok yang tepat. Penilaian kualitas daun tembakau ini terdiri dari dua faktor yaitu human sensory dan human vision yang dilakukan oleh grader. Perkembangan teknologi informasi saat ini mampu melakukan pengolahan citra sehingga dapat memaksimalkan faktor human vision yang diharapkan dapat menghemat waktu dan biaya. Pada penelitian ini, deteksi kualitas daun tembakau didasarkan pada dua ekstraksi fitur daun tembakau yaitu bentuk dan tekstur. Kedua fitur tersebut nantinya akan diklasifikasikan menggunakan optimasi Conjugate Gradient pada Backpropagation Neural Network. Hasilnya, metode yang digunakan mampu meningkatkan tingkat akurasi deteksi kualitas daun tembakau. Peningkatan akurasi untuk klasifikasi grade daun tembakau dengan metode backpropagation neural network mencapai akurasi hingga 77,50%

    A review of neural networks in plant disease detection using hyperspectral data

    Get PDF
    © 2018 China Agricultural University This paper reviews advanced Neural Network (NN) techniques available to process hyperspectral data, with a special emphasis on plant disease detection. Firstly, we provide a review on NN mechanism, types, models, and classifiers that use different algorithms to process hyperspectral data. Then we highlight the current state of imaging and non-imaging hyperspectral data for early disease detection. The hybridization of NN-hyperspectral approach has emerged as a powerful tool for disease detection and diagnosis. Spectral Disease Index (SDI) is the ratio of different spectral bands of pure disease spectra. Subsequently, we introduce NN techniques for rapid development of SDI. We also highlight current challenges and future trends of hyperspectral data

    Numerical Modeling and Design of Machine Learning Based Paddy Leaf Disease Detection System for Agricultural Applications

    Get PDF
    In order to satisfy the insatiable need for ever more bountiful harvests on the global market, the majority of countries deploy cutting-edge technologies to increase agricultural output. Only the most cutting-edge technologies can ensure an appropriate pace of food production. Abiotic stress factors that can affect plants at any stage of development include insects, diseases, drought, nutrient deficiencies, and weeds. On the amount and quality of agricultural production, this has a minimal effect. Identification of plant diseases is therefore essential but challenging and complicated. Paddy leaves must thus be closely watched in order to assess their health and look for disease symptoms. The productivity and production of the post-harvest period are significantly impacted by these illnesses. To gauge the severity of plant disease in the past, only visual examination (bare eye observation) methods have been employed. The skill of the analyst doing this analysis is essential to the caliber of the outcomes. Due to the large growing area and need for ongoing human monitoring, visual crop inspection takes a long time. Therefore, a system is required to replace human inspection. In order to identify the kind and severity of plant disease, image processing techniques are used in agriculture. This dissertation goes into great length regarding the many ailments that may be detected in rice fields using image processing. Identification and classification of the four rice plant diseases bacterial blight, sheath rot, blast, and brown spot are important to enhance yield. The other communicable diseases, such as stem rot, leaf scald, red stripe, and false smut, are not discussed in this paper. Despite the increased accuracy they offer, the categorization and optimization strategies utilized in this work lead it to take longer than typical to finish. It was evident that employing SVM techniques enabled superior performance results, but at a cost of substantial effort. K-means clustering is used in this paper segmentation process, which makes figuring out the cluster size, or K-value, more challenging. This clustering method operates best when used with images that are comparable in size and brightness. However, when the images have complicated sizes and intensity values, clustering is not particularly effective
    corecore