179,721 research outputs found

    HeteroCore GPU to exploit TLP-resource diversity

    Get PDF

    Fuzzy C-Mean And Genetic Algorithms Based Scheduling For Independent Jobs In Computational Grid

    Get PDF
    The concept of Grid computing is becoming the most important research area in the high performance computing. Under this concept, the jobs scheduling in Grid computing has more complicated problems to discover a diversity of available resources, select the appropriate applications and map to suitable resources. However, the major problem is the optimal job scheduling, which Grid nodes need to allocate the appropriate resources for each job. In this paper, we combine Fuzzy C-Mean and Genetic Algorithms which are popular algorithms, the Grid can be used for scheduling. Our model presents the method of the jobs classifications based mainly on Fuzzy C-Mean algorithm and mapping the jobs to the appropriate resources based mainly on Genetic algorithm. In the experiments, we used the workload historical information and put it into our simulator. We get the better result when compared to the traditional algorithms for scheduling policies. Finally, the paper also discusses approach of the jobs classifications and the optimization engine in Grid scheduling

    Massively Parallel Video Networks

    Full text link
    We introduce a class of causal video understanding models that aims to improve efficiency of video processing by maximising throughput, minimising latency, and reducing the number of clock cycles. Leveraging operation pipelining and multi-rate clocks, these models perform a minimal amount of computation (e.g. as few as four convolutional layers) for each frame per timestep to produce an output. The models are still very deep, with dozens of such operations being performed but in a pipelined fashion that enables depth-parallel computation. We illustrate the proposed principles by applying them to existing image architectures and analyse their behaviour on two video tasks: action recognition and human keypoint localisation. The results show that a significant degree of parallelism, and implicitly speedup, can be achieved with little loss in performance.Comment: Fixed typos in densenet model definition in appendi

    Security in online learning assessment towards an effective trustworthiness approach to support e-learning teams

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This paper proposes a trustworthiness model for the design of secure learning assessment in on-line collaborative learning groups. Although computer supported collaborative learning has been widely adopted in many educational institutions over the last decade, there exist still drawbacks which limit their potential in collaborative learning activities. Among these limitations, we investigate information security requirements in on-line assessment, (e-assessment), which can be developed in collaborative learning contexts. Despite information security enhancements have been developed in recent years, to the best of our knowledge, integrated and holistic security models have not been completely carried out yet. Even when security advanced methodologies and technologies are deployed in Learning Management Systems, too many types of vulnerabilities still remain opened and unsolved. Therefore, new models such as trustworthiness approaches can overcome these lacks and support e-assessment requirements for e-Learning. To this end, a trustworthiness model is designed in order to conduct the guidelines of a holistic security model for on-line collaborative learning through effective trustworthiness approaches. In addition, since users' trustworthiness analysis involves large amounts of ill-structured data, a parallel processing paradigm is proposed to build relevant information modeling trustworthiness levels for e-Learning.Peer ReviewedPostprint (author's final draft

    A Genetic Programming Framework for Two Data Mining Tasks: Classification and Generalized Rule Induction

    Get PDF
    This paper proposes a genetic programming (GP) framework for two major data mining tasks, namely classification and generalized rule induction. The framework emphasizes the integration between a GP algorithm and relational database systems. In particular, the fitness of individuals is computed by submitting SQL queries to a (parallel) database server. Some advantages of this integration from a data mining viewpoint are scalability, data-privacy control and automatic parallelization
    corecore