11,500 research outputs found

    Detection of Mines in Acoustic Images using Higher Order Spectral Features

    Get PDF
    A new pattern-recognition algorithm detects approximately 90% of the mines hidden in the Coastal Systems Station Sonar0, 1, and 3 databases of cluttered acoustic images, with about 10% false alarms. Similar to other approaches, the algorithm presented here includes processing the images with an adaptive Wiener filter (the degree of smoothing depends on the signal strength in a local neighborhood) to remove noise without destroying the structural information in the mine shapes, followed by a two-dimensional FIR filter designed to suppress noise and clutter, while enhancing the target signature. A double peak pattern is produced as the FIR filter passes over mine highlight and shadow regions. Although the location, size, and orientation of this pattern within a region of the image can vary, features derived from higher order spectra (HOS) are invariant to translation, rotation, and scaling, while capturing the spatial correlations of mine-like objects. Classification accuracy is improved by combining features based on geometrical properties of the filter output with features based on HOS. The highest accuracy is obtained by fusing classification based on bispectral features with classification based on trispectral features

    Recent Progress in Image Deblurring

    Full text link
    This paper comprehensively reviews the recent development of image deblurring, including non-blind/blind, spatially invariant/variant deblurring techniques. Indeed, these techniques share the same objective of inferring a latent sharp image from one or several corresponding blurry images, while the blind deblurring techniques are also required to derive an accurate blur kernel. Considering the critical role of image restoration in modern imaging systems to provide high-quality images under complex environments such as motion, undesirable lighting conditions, and imperfect system components, image deblurring has attracted growing attention in recent years. From the viewpoint of how to handle the ill-posedness which is a crucial issue in deblurring tasks, existing methods can be grouped into five categories: Bayesian inference framework, variational methods, sparse representation-based methods, homography-based modeling, and region-based methods. In spite of achieving a certain level of development, image deblurring, especially the blind case, is limited in its success by complex application conditions which make the blur kernel hard to obtain and be spatially variant. We provide a holistic understanding and deep insight into image deblurring in this review. An analysis of the empirical evidence for representative methods, practical issues, as well as a discussion of promising future directions are also presented.Comment: 53 pages, 17 figure

    Reports on industrial information technology. Vol. 12

    Get PDF
    The 12th volume of Reports on Industrial Information Technology presents some selected results of research achieved at the Institute of Industrial Information Technology during the last two years.These results have contributed to many cooperative projects with partners from academia and industry and cover current research interests including signal and image processing, pattern recognition, distributed systems, powerline communications, automotive applications, and robotics

    Uncertainty Quantification for Hyperspectral Image Denoising Frameworks based on Low-rank Matrix Approximation

    Full text link
    Sliding-window based low-rank matrix approximation (LRMA) is a technique widely used in hyperspectral images (HSIs) denoising or completion. However, the uncertainty quantification of the restored HSI has not been addressed to date. Accurate uncertainty quantification of the denoised HSI facilitates to applications such as multi-source or multi-scale data fusion, data assimilation, and product uncertainty quantification, since these applications require an accurate approach to describe the statistical distributions of the input data. Therefore, we propose a prior-free closed-form element-wise uncertainty quantification method for LRMA-based HSI restoration. Our closed-form algorithm overcomes the difficulty of the HSI patch mixing problem caused by the sliding-window strategy used in the conventional LRMA process. The proposed approach only requires the uncertainty of the observed HSI and provides the uncertainty result relatively rapidly and with similar computational complexity as the LRMA technique. We conduct extensive experiments to validate the estimation accuracy of the proposed closed-form uncertainty approach. The method is robust to at least 10% random impulse noise at the cost of 10-20% of additional processing time compared to the LRMA. The experiments indicate that the proposed closed-form uncertainty quantification method is more applicable to real-world applications than the baseline Monte Carlo test, which is computationally expensive. The code is available in the attachment and will be released after the acceptance of this paper.Comment: Accepted for publication by IEEE Transactions on Geoscience and Remote Sensing. IEEE Transactions on Geoscience and Remote Sensing (TGRS
    • …
    corecore