51 research outputs found

    Risk assessment of subcritical water hydrolysis (SWH) system for sugar recovery using failure modes and effects analysis (FMEA) methods

    Get PDF
    The subcritical water hydrolysis (SWH) process has proven to be an effective method for sugar recovery from bakery waste. However, the natural principle of the process involving high pressure and temperature has made it a hazardous operation. Hence, failure mode and effect analysis (FMEA) has been applied to identify the potential failure modes in subcritical water hydrolysis (SWH) systems. The Risk Priority Number (RPN) approach was used to rate each potential problem during the SWH process. The reactor unit was found to have the highest potential for failure by RPN value of 800 with the ‘failure effect analysis’ on the potential reactor cap to explode due to the very high pressure inside the reactor that developed during SWH. The failure consequences may lead to injury or even death. As a result of the FMEA assessment approach and several corrective action plans, the failure risks of SWH can be reduced and managed effectively

    Review of emergent behaviours of systems comparable to infrastructure systemsand analysis approaches that could be applied to infrastructure systems

    Get PDF
    This paper makes contributions to the understanding of emergent failure in economic infrastructure by considering case studies and approaches from sectors comparable to infrastructure. The review starts by identifying existing ways of thinking about emergent failure and narrows down the scope to system-of-systems’ failures which are unexpected and arise when systems appear to be working normally. In order to target sectors similar to infrastructure, the characteristics of infrastructure sectors were characterised

    Automotive Mechatronic Safety Argument Framework

    Get PDF
    A modern vehicle uses mechanical components under software control, referred to as mechatronic systems, to deliver its features. The software for these, and its supporting hardware, are typically developed according to the functional safety standard ISO 26262:2011. This standard requires that a safety argument is created that demonstrates that the safety requirements for an item are complete and satisfied by evidence. However, this argument only addresses the software and electronic hardware aspects of the mechatronic system, although safety requirements derived for these can also be allocated to the mechanical part of the mechatronic system. The safety requirements allocated to hardware and software also have a value of integrity assigned to them based on an assessment of the unmitigated risk. The concept of risk and integrity is expressed differently in the development of the mechanical components. In this thesis, we address the challenge of extending the safety argument required by ISO 26262 to include the mechanical components being controlled, so creating a safety argument pattern that encompasses the complete mechatronic system. The approach is based on a generic model for engineering which can be applied to the development of the hardware, software and mechanical components. From this, a safety argument pattern has been derived which consequently can be applied to all three engineering disciplines of the mechatronic system. The harmonisation of the concept of integrity is addressed through the use of special characteristics. The result is a model-based assurance approach which allows an argument to be constructed for the mitigation of risk associated with a mechatronic system that encompasses the three engineering disciplines of the system. This approach is evaluated through interview-based case studies and the retrospective application of the approach to an existing four corner air suspension system

    A novel method for the risk assessment of human evacuation from cruise ships in maritime transportation

    Get PDF
    In maritime transport, evacuation, escape and rescue play a crucial role in protecting people's lives when a passenger ship is involved in a serious accident. The study aims to develop a new method to identify hazards, quantify and rank the associated risks in the process of Human Evacuation from Passenger Ships (HEPS). Firstly, based on extensive literature review and marine accident investigation reports, the risk factors affecting passenger ship evacuation were analysed and identified, and an analysis framework based on Human, Ship, Environment and Organization (HSEO) for HEPS was proposed. Secondly, a risk assessment model was proposed to quantify and rank risk factors in the process of HEPS. Finally, a large-scale evacuation drill of a cruise ship was taken as a case study to demonstrate the applicability of the proposed evaluation model, and accuracy of the results. The results reveal that (1) evacuation decision, operation of Life-Saving Appliances (LSAs) are the main risks affecting the safety of HEPS; (2) the behaviours of passengers have a relatively lower risk priority; and (3) future HEPS research should focus on the development of a multi-attribute decision system to address the issue on when to evacuate and when to abandon a ship

    Product Development within Artificial Intelligence, Ethics and Legal Risk

    Get PDF
    This open-access-book synthesizes a supportive developer checklist considering sustainable Team and agile Project Management in the challenge of Artificial Intelligence and limits of image recognition. The study bases on technical, ethical, and legal requirements with examples concerning autonomous vehicles. As the first of its kind, it analyzes all reported car accidents state wide (1.28 million) over a 10-year period. Integrating of highly sensitive international court rulings and growing consumer expectations make this book a helpful guide for product and team development from initial concept until market launch

    Product Development within Artificial Intelligence, Ethics and Legal Risk

    Get PDF
    This open-access-book synthesizes a supportive developer checklist considering sustainable Team and agile Project Management in the challenge of Artificial Intelligence and limits of image recognition. The study bases on technical, ethical, and legal requirements with examples concerning autonomous vehicles. As the first of its kind, it analyzes all reported car accidents state wide (1.28 million) over a 10-year period. Integrating of highly sensitive international court rulings and growing consumer expectations make this book a helpful guide for product and team development from initial concept until market launch

    Testing automated driving systems to calibrate drivers’ trust

    Get PDF
    Automated Driving Systems (ADSs) offer many potential benefits like improved safety, reduced traffic congestion and lower emissions. However, such benefits can only be realised if drivers trust and make use of such systems. The two challenges explored in this thesis are: 1) How to increase trust in ADSs? 2) How to identify the test scenarios to establish the true capabilities and limitations of ADSs? Firstly, drivers’ trust needs to be calibrated to the “appropriate” level to prevent misuse (due to over trust) or disuse (due to under trust) of the system. In this research, a method to calibrate drivers’ trust to the appropriate level has been created. This method involves providing knowledge of the capabilities and limitations of the ADSs to the driver. However, there is a need to establish the capabilities and limitations of the ADSs which form the knowledge to be imparted to the driver. Therefore, the next research contribution lies in the development of a novel method to establish the knowledge of capabilities and limitations of ADSs (used to calibrate trust) in a reliable manner. This knowledge can be created by testing ADSs. However, in literature, an unanswered research question remains: How to identify test scenarios which highlight the limitations of ADSs? In order to identify such test scenarios, a novel hazard based testing approach to establish the capabilities and limitations of ADSs is presented by extending STPA (a hazard identification method) to create test scenarios. To ensure reliability of the hazard classification (and of the knowledge), the author created a novel objective approach for risk classification by creating a rule-set for risk ratings. The contribution of this research lies in developing a method to increase trust in ADSs by creating reliable knowledge using hazard based testing approach which identifies how an ADS can fail

    Formalization of the ISO 26262 standard

    Get PDF

    Maximum risk reduction with a fixed budget in the railway industry

    Get PDF
    Decision-makers in safety-critical industries such as the railways are frequently faced with the complexity of selecting technological, procedural and operational solutions to minimise staff, passengers and third parties’ safety risks. In reality, the options for maximising risk reduction are limited by time and budget constraints as well as performance objectives. Maximising risk reduction is particularly necessary in the times of economic recession where critical services such as those on the UK rail network are not immune to budget cuts. This dilemma is further complicated by statutory frameworks stipulating ‘suitable and sufficient’ risk assessments and constraints such as ‘as low as reasonably practicable’. These significantly influence risk reduction option selection and influence their effective implementation. This thesis provides extensive research in this area and highlights the limitations of widely applied practices. These practices have limited significance on fundamental engineering principles and become impracticable when a constraint such as a fixed budget is applied – this is the current reality of UK rail network operations and risk management. This thesis identifies three main areas of weaknesses to achieving the desired objectives with current risk reduction methods as: Inaccurate, and unclear problem definition; Option evaluation and selection removed from implementation subsequently resulting in misrepresentation of risks and costs; Use of concepts and methods that are not based on fundamental engineering principles, not verifiable and with resultant sub-optimal solutions. Although not solely intended for a single industrial sector, this thesis focuses on guiding the railway risk decision-maker by providing clear categorisation of measures used on railways for risk reduction. This thesis establishes a novel understanding of risk reduction measures’ application limitations and respective strengths. This is achieved by applying ‘key generic engineering principles’ to measures employed for risk reduction. A comprehensive study of their preventive and protective capability in different configurations is presented. Subsequently, the fundamental understanding of risk reduction measures and their railway applications, the ‘cost-of-failure’ (CoF), ‘risk reduction readiness’ (RRR), ‘design-operationalprocedural-technical’ (DOPT) concepts are developed for rational and cost-effective risk reduction. These concepts are shown to be particularly relevant to cases where blind applications of economic and mathematical theories are misleading and detrimental to engineering risk management. The case for successfully implementing this framework for maximum risk reduction within a fixed budget is further strengthened by applying, for the first time in railway risk reduction applications, the dynamic programming technique based on practical railway examples

    Failure mode avoidance : a risk management approach to obtain new product development projects right-first-time

    Get PDF
    The focus of this research is to develop right-first-time new projects and underlying new products using the principles of Failure Mode Avoidance. The Failure Mode Avoidance currently focuses on producing a right-first-time product via a paradigm shift from the material stages to information stages of NPD process. It is primarily a risk management strategy implemented in the NPD process with a special focus on avoidance and mitigation response methods. The Failure Mode Avoidance refers to an ideal state where it is presumed that all potential failure modes and corresponding causes can be identified and prevented right early in the information based phases of NPD process. The current FMA frameworks including BEQIC FMA framework and MFMA (Manufacturing FMA) framework are heavily focused on engineering design and manufacturing processes respectively in isolation and lacks a holistic approach to achieve a right-first-time NPD project as an output of the NPD process. Furthermore, these framework focuses only on the robustness improvement in engineering design and fails to include mistake prevention, which is equally essential when dealing with avoidance of failure modes in the NPD process. Thus, this research aims to address these gaps via the development of an analytical and holistic NPD FMA framework that focuses on minimizing 'asymmetry' in the NPD process via avoiding and mitigating risks arising due to potential failures and helps facilitate development of right-first-time new projects as well as products. The proposed framework is applied in a real-life company environment for the validation of approach
    • 

    corecore