39,080 research outputs found

    An Empirical Analysis of the Role of Amplifiers, Downtoners, and Negations in Emotion Classification in Microblogs

    Full text link
    The effect of amplifiers, downtoners, and negations has been studied in general and particularly in the context of sentiment analysis. However, there is only limited work which aims at transferring the results and methods to discrete classes of emotions, e. g., joy, anger, fear, sadness, surprise, and disgust. For instance, it is not straight-forward to interpret which emotion the phrase "not happy" expresses. With this paper, we aim at obtaining a better understanding of such modifiers in the context of emotion-bearing words and their impact on document-level emotion classification, namely, microposts on Twitter. We select an appropriate scope detection method for modifiers of emotion words, incorporate it in a document-level emotion classification model as additional bag of words and show that this approach improves the performance of emotion classification. In addition, we build a term weighting approach based on the different modifiers into a lexical model for the analysis of the semantics of modifiers and their impact on emotion meaning. We show that amplifiers separate emotions expressed with an emotion- bearing word more clearly from other secondary connotations. Downtoners have the opposite effect. In addition, we discuss the meaning of negations of emotion-bearing words. For instance we show empirically that "not happy" is closer to sadness than to anger and that fear-expressing words in the scope of downtoners often express surprise.Comment: Accepted for publication at The 5th IEEE International Conference on Data Science and Advanced Analytics (DSAA), https://dsaa2018.isi.it

    Demographic Inference and Representative Population Estimates from Multilingual Social Media Data

    Get PDF
    Social media provide access to behavioural data at an unprecedented scale and granularity. However, using these data to understand phenomena in a broader population is difficult due to their non-representativeness and the bias of statistical inference tools towards dominant languages and groups. While demographic attribute inference could be used to mitigate such bias, current techniques are almost entirely monolingual and fail to work in a global environment. We address these challenges by combining multilingual demographic inference with post-stratification to create a more representative population sample. To learn demographic attributes, we create a new multimodal deep neural architecture for joint classification of age, gender, and organization-status of social media users that operates in 32 languages. This method substantially outperforms current state of the art while also reducing algorithmic bias. To correct for sampling biases, we propose fully interpretable multilevel regression methods that estimate inclusion probabilities from inferred joint population counts and ground-truth population counts. In a large experiment over multilingual heterogeneous European regions, we show that our demographic inference and bias correction together allow for more accurate estimates of populations and make a significant step towards representative social sensing in downstream applications with multilingual social media.Comment: 12 pages, 10 figures, Proceedings of the 2019 World Wide Web Conference (WWW '19

    Multitask Learning for Fine-Grained Twitter Sentiment Analysis

    Get PDF
    Traditional sentiment analysis approaches tackle problems like ternary (3-category) and fine-grained (5-category) classification by learning the tasks separately. We argue that such classification tasks are correlated and we propose a multitask approach based on a recurrent neural network that benefits by jointly learning them. Our study demonstrates the potential of multitask models on this type of problems and improves the state-of-the-art results in the fine-grained sentiment classification problem.Comment: International ACM SIGIR Conference on Research and Development in Information Retrieval 201
    • …
    corecore