27,401 research outputs found

    Classification Confidence Estimation with Test-Time Data-Augmentation

    Full text link
    Machine learning plays an increasingly significant role in many aspects of our lives (including medicine, transportation, security, justice and other domains), making the potential consequences of false predictions increasingly devastating. These consequences may be mitigated if we can automatically flag such false predictions and potentially assign them to alternative, more reliable mechanisms, that are possibly more costly and involve human attention. This suggests the task of detecting errors, which we tackle in this paper for the case of visual classification. To this end, we propose a novel approach for classification confidence estimation. We apply a set of semantics-preserving image transformations to the input image, and show how the resulting image sets can be used to estimate confidence in the classifier's prediction. We demonstrate the potential of our approach by extensively evaluating it on a wide variety of classifier architectures and datasets, including ResNext/ImageNet, achieving state of the art performance. This paper constitutes a significant revision of our earlier work in this direction (Bahat & Shakhnarovich, 2018)

    Data-Efficient Mutual Information Neural Estimator

    Full text link
    Measuring Mutual Information (MI) between high-dimensional, continuous, random variables from observed samples has wide theoretical and practical applications. Recent work, MINE (Belghazi et al. 2018), focused on estimating tight variational lower bounds of MI using neural networks, but assumed unlimited supply of samples to prevent overfitting. In real world applications, data is not always available at a surplus. In this work, we focus on improving data efficiency and propose a Data-Efficient MINE Estimator (DEMINE), by developing a relaxed predictive MI lower bound that can be estimated at higher data efficiency by orders of magnitudes. The predictive MI lower bound also enables us to develop a new meta-learning approach using task augmentation, Meta-DEMINE, to improve generalization of the network and further boost estimation accuracy empirically. With improved data-efficiency, our estimators enables statistical testing of dependency at practical dataset sizes. We demonstrate the effectiveness of our estimators on synthetic benchmarks and a real world fMRI data, with application of inter-subject correlation analysis

    Machine Learning for recognition of minerals from multispectral data

    Full text link
    Machine Learning (ML) has found several applications in spectroscopy, including being used to recognise minerals and estimate elemental composition. In this work, we present novel methods for automatic mineral identification based on combining data from different spectroscopic methods. We evaluate combining data from three spectroscopic methods: vibrational Raman scattering, reflective Visible-Near Infrared (VNIR), and Laser-Induced Breakdown Spectroscopy (LIBS). These methods were paired into Raman + VNIR, Raman + LIBS and VNIR + LIBS, and different methods of data fusion applied to each pair to classify minerals. The methods presented here are shown to outperform the use of a single data source by a significant margin. Additionally, we present a Deep Learning algorithm for mineral classification from Raman spectra that outperforms previous state-of-the-art methods. Our approach was tested on various open access experimental Raman (RRUFF) and VNIR (USGS, Relab, ECOSTRESS), as well as synthetic LIBS NIST spectral libraries. Our cross-validation tests show that multi-method spectroscopy paired with ML paves the way towards rapid and accurate characterization of rocks and minerals.Comment: 11 page

    Distance-based Confidence Score for Neural Network Classifiers

    Full text link
    The reliable measurement of confidence in classifiers' predictions is very important for many applications and is, therefore, an important part of classifier design. Yet, although deep learning has received tremendous attention in recent years, not much progress has been made in quantifying the prediction confidence of neural network classifiers. Bayesian models offer a mathematically grounded framework to reason about model uncertainty, but usually come with prohibitive computational costs. In this paper we propose a simple, scalable method to achieve a reliable confidence score, based on the data embedding derived from the penultimate layer of the network. We investigate two ways to achieve desirable embeddings, by using either a distance-based loss or Adversarial Training. We then test the benefits of our method when used for classification error prediction, weighting an ensemble of classifiers, and novelty detection. In all tasks we show significant improvement over traditional, commonly used confidence scores

    Pose Estimation for Non-Cooperative Spacecraft Rendezvous Using Convolutional Neural Networks

    Full text link
    On-board estimation of the pose of an uncooperative target spacecraft is an essential task for future on-orbit servicing and close-proximity formation flying missions. However, two issues hinder reliable on-board monocular vision based pose estimation: robustness to illumination conditions due to a lack of reliable visual features and scarcity of image datasets required for training and benchmarking. To address these two issues, this work details the design and validation of a monocular vision based pose determination architecture for spaceborne applications. The primary contribution to the state-of-the-art of this work is the introduction of a novel pose determination method based on Convolutional Neural Networks (CNN) to provide an initial guess of the pose in real-time on-board. The method involves discretizing the pose space and training the CNN with images corresponding to the resulting pose labels. Since reliable training of the CNN requires massive image datasets and computational resources, the parameters of the CNN must be determined prior to the mission with synthetic imagery. Moreover, reliable training of the CNN requires datasets that appropriately account for noise, color, and illumination characteristics expected in orbit. Therefore, the secondary contribution of this work is the introduction of an image synthesis pipeline, which is tailored to generate high fidelity images of any spacecraft 3D model. The proposed technique is scalable to spacecraft of different structural and physical properties as well as robust to the dynamic illumination conditions of space. Through metrics measuring classification and pose accuracy, it is shown that the presented architecture has desirable robustness and scalable properties.Comment: Presented at the 2018 IEEE Aerospace Conference, Big Sky, M

    Full Workspace Generation of Serial-link Manipulators by Deep Learning based Jacobian Estimation

    Full text link
    Apart from solving complicated problems that require a certain level of intelligence, fine-tuned deep neural networks can also create fast algorithms for slow, numerical tasks. In this paper, we introduce an improved version of [1]'s work, a fast, deep-learning framework capable of generating the full workspace of serial-link manipulators. The architecture consists of two neural networks: an estimation net that approximates the manipulator Jacobian, and a confidence net that measures the confidence of the approximation. We also introduce M3 (Manipulability Maps of Manipulators), a MATLAB robotics library based on [2](RTB), the datasets generated by which are used by this work. Results have shown that not only are the neural networks significantly faster than numerical inverse kinematics, it also offers superior accuracy when compared to other machine learning alternatives. Implementations of the algorithm (based on Keras[3]), including benchmark evaluation script, are available at https://github.com/liaopeiyuan/Jacobian-Estimation . The M3 Library APIs and datasets are also available at https://github.com/liaopeiyuan/M3 .Comment: 10 pages, 12 figure

    Towards Robust Human Activity Recognition from RGB Video Stream with Limited Labeled Data

    Full text link
    Human activity recognition based on video streams has received numerous attentions in recent years. Due to lack of depth information, RGB video based activity recognition performs poorly compared to RGB-D video based solutions. On the other hand, acquiring depth information, inertia etc. is costly and requires special equipment, whereas RGB video streams are available in ordinary cameras. Hence, our goal is to investigate whether similar or even higher accuracy can be achieved with RGB-only modality. In this regard, we propose a novel framework that couples skeleton data extracted from RGB video and deep Bidirectional Long Short Term Memory (BLSTM) model for activity recognition. A big challenge of training such a deep network is the limited training data, and exploring RGB-only stream significantly exaggerates the difficulty. We therefore propose a set of algorithmic techniques to train this model effectively, e.g., data augmentation, dynamic frame dropout and gradient injection. The experiments demonstrate that our RGB-only solution surpasses the state-of-the-art approaches that all exploit RGB-D video streams by a notable margin. This makes our solution widely deployable with ordinary cameras.Comment: To appear in ICMLA 201

    Partial Face Detection in the Mobile Domain

    Full text link
    Generic face detection algorithms do not perform well in the mobile domain due to significant presence of occluded and partially visible faces. One promising technique to handle the challenge of partial faces is to design face detectors based on facial segments. In this paper two different approaches of facial segment-based face detection are discussed, namely, proposal-based detection and detection by end-to-end regression. Methods that follow the first approach rely on generating face proposals that contain facial segment information. The three detectors following this approach, namely Facial Segment-based Face Detector (FSFD), SegFace and DeepSegFace, discussed in this paper, perform binary classification on each proposal based on features learned from facial segments. The process of proposal generation, however, needs to be handled separately, which can be very time consuming, and is not truly necessary given the nature of the active authentication problem. Hence a novel algorithm, Deep Regression-based User Image Detector (DRUID) is proposed, which shifts from the classification to the regression paradigm, thus obviating the need for proposal generation. DRUID has an unique network architecture with customized loss functions, is trained using a relatively small amount of data by utilizing a novel data augmentation scheme and is fast since it outputs the bounding boxes of a face and its segments in a single pass. Being robust to occlusion by design, the facial segment-based face detection methods, especially DRUID show superior performance over other state-of-the-art face detectors in terms of precision-recall and ROC curve on two mobile face datasets.Comment: 18 pages, 22 figures, 3 tables, submitted to IEEE Transactions on Image Processin

    Optical Neural Networks

    Full text link
    We develop a novel optical neural network (ONN) framework which introduces a degree of scalar invariance to image classification estima- tion. Taking a hint from the human eye, which has higher resolution near the center of the retina, images are broken out into multiple levels of varying zoom based on a focal point. Each level is passed through an identical convolutional neural network (CNN) in a Siamese fashion, and the results are recombined to produce a high accuracy estimate of the object class. ONNs act as a wrapper around existing CNNs, and can thus be applied to many existing algorithms to produce notable accuracy improvements without having to change the underlying architecture.Comment: Submitted to NIPS 201

    A Less Biased Evaluation of Out-of-distribution Sample Detectors

    Full text link
    In the real world, a learning system could receive an input that is unlike anything it has seen during training. Unfortunately, out-of-distribution samples can lead to unpredictable behaviour. We need to know whether any given input belongs to the population distribution of the training/evaluation data to prevent unpredictable behaviour in deployed systems. A recent surge of interest in this problem has led to the development of sophisticated techniques in the deep learning literature. However, due to the absence of a standard problem definition or an exhaustive evaluation, it is not evident if we can rely on these methods. What makes this problem different from a typical supervised learning setting is that the distribution of outliers used in training may not be the same as the distribution of outliers encountered in the application. Classical approaches that learn inliers vs. outliers with only two datasets can yield optimistic results. We introduce OD-test, a three-dataset evaluation scheme as a more reliable strategy to assess progress on this problem. We present an exhaustive evaluation of a broad set of methods from related areas on image classification tasks. Contrary to the existing results, we show that for realistic applications of high-dimensional images the previous techniques have low accuracy and are not reliable in practice.Comment: to appear in BMVC 2019; v2 is more compact, with more result
    • …
    corecore