8,081 research outputs found

    Quadrature Points via Heat Kernel Repulsion

    Full text link
    We discuss the classical problem of how to pick NN weighted points on a d−d-dimensional manifold so as to obtain a reasonable quadrature rule 1∣M∣∫Mf(x)dx≃1N∑n=1Naif(xi). \frac{1}{|M|}\int_{M}{f(x) dx} \simeq \frac{1}{N} \sum_{n=1}^{N}{a_i f(x_i)}. This problem, naturally, has a long history; the purpose of our paper is to propose selecting points and weights so as to minimize the energy functional \sum_{i,j =1}^{N}{ a_i a_j \exp\left(-\frac{d(x_i,x_j)^2}{4t}\right) } \rightarrow \min, \quad \mbox{where}~t \sim N^{-2/d}, d(x,y)d(x,y) is the geodesic distance and dd is the dimension of the manifold. This yields point sets that are theoretically guaranteed, via spectral theoretic properties of the Laplacian −Δ-\Delta, to have good properties. One nice aspect is that the energy functional is universal and independent of the underlying manifold; we show several numerical examples

    Bayesian Quadrature for Multiple Related Integrals

    Get PDF
    Bayesian probabilistic numerical methods are a set of tools providing posterior distributions on the output of numerical methods. The use of these methods is usually motivated by the fact that they can represent our uncertainty due to incomplete/finite information about the continuous mathematical problem being approximated. In this paper, we demonstrate that this paradigm can provide additional advantages, such as the possibility of transferring information between several numerical methods. This allows users to represent uncertainty in a more faithful manner and, as a by-product, provide increased numerical efficiency. We propose the first such numerical method by extending the well-known Bayesian quadrature algorithm to the case where we are interested in computing the integral of several related functions. We then prove convergence rates for the method in the well-specified and misspecified cases, and demonstrate its efficiency in the context of multi-fidelity models for complex engineering systems and a problem of global illumination in computer graphics.Comment: Proceedings of the 35th International Conference on Machine Learning (ICML), PMLR 80:5369-5378, 201

    The SLH framework for modeling quantum input-output networks

    Full text link
    Many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, eg. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields by an operator triple (S,L,H)(S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.Comment: 60 pages, 14 figures. We are still interested in receiving correction
    • …
    corecore