283 research outputs found

    Intuitionistic G\"odel-L\"ob logic, \`a la Simpson: labelled systems and birelational semantics

    Full text link
    We derive an intuitionistic version of G\"odel-L\"ob modal logic (GL\sf{GL}) in the style of Simpson, via proof theoretic techniques. We recover a labelled system, â„“IGL\sf{\ell IGL}, by restricting a non-wellfounded labelled system for GL\sf{GL} to have only one formula on the right. The latter is obtained using techniques from cyclic proof theory, sidestepping the barrier that GL\sf{GL}'s usual frame condition (converse well-foundedness) is not first-order definable. While existing intuitionistic versions of GL\sf{GL} are typically defined over only the box (and not the diamond), our presentation includes both modalities. Our main result is that â„“IGL\sf{\ell IGL} coincides with a corresponding semantic condition in birelational semantics: the composition of the modal relation and the intuitionistic relation is conversely well-founded. We call the resulting logic IGL\sf{IGL}. While the soundness direction is proved using standard ideas, the completeness direction is more complex and necessitates a detour through several intermediate characterisations of IGL\sf{IGL}.Comment: 25 pages including 8 pages appendix, 4 figure

    Tower-Complete Problems in Contraction-Free Substructural Logics

    Get PDF
    We investigate the non-elementary computational complexity of a family of substructural logics without contraction. With the aid of the technique pioneered by Lazi\'c and Schmitz (2015), we show that the deducibility problem for full Lambek calculus with exchange and weakening (FLew\mathbf{FL}_{\mathbf{ew}}) is not in Elementary (i.e., the class of decision problems that can be decided in time bounded by an elementary recursive function), but is in PR (i.e., the class of decision problems that can be decided in time bounded by a primitive recursive function). More precisely, we show that this problem is complete for Tower, which is a non-elementary complexity class forming a part of the fast-growing complexity hierarchy introduced by Schmitz (2016). The same complexity result holds even for deducibility in BCK-logic, i.e., the implicational fragment of FLew\mathbf{FL}_{\mathbf{ew}}. We furthermore show the Tower-completeness of the provability problem for elementary affine logic, which was proved to be decidable by Dal Lago and Martini (2004).Comment: The full version of the paper accepted to CSL 202
    • …
    corecore