10,819 research outputs found

    Discovering Quantum Causal Models (final)

    Get PDF
    Costa and Shrapnel [2016] have recently proposed an interventionist theory of quantum causation. The formalism generalises the classical methods of Pearl [2000] and allows for the discovery of quantum causal structure via localised interventions. Classical causal structure is presented as a special case of this more general framework. I introduce the account and consider whether this formalism provides a causal explanation for the Bell correlations

    Discovering quantum causal models

    Get PDF
    Costa and Shrapnel ([2016]) have recently proposed an interventionist theory of quantum causation. The formalism generalizes the classical methods of Pearl ([2000]) and allows for the discovery of quantum causal structure via localized interventions. Classical causal structure is presented as a special case of this more general framework. I introduce the account and consider whether this formalism provides a causal explanation for the Bell correlations. 1 Introduction 2 Classical Causal Models 3 What's the (Quantum) Problem? 4 Quantum Causal Models: Why Bother? 5 Markov Quantum Causal Models 6 The Bell Experiment 7 Bell's Objections

    Quantifying Quantum Causal Influences

    Full text link
    Causal influences are at the core of any empirical science, the reason why its quantification is of paramount relevance for the mathematical theory of causality and applications. Quantum correlations, however, challenge our notion of cause and effect, implying that tools and concepts developed over the years having in mind a classical world, have to be reevaluated in the presence of quantum effects. Here, we propose the quantum version of the most common causality quantifier, the average causal effect (ACE), measuring how much a target quantum system is changed by interventions on its presumed cause. Not only it offers an innate manner to quantify causation in two-qubit gates but also in alternative quantum computation models such as the measurement-based version, suggesting that causality can be used as a proxy for optimizing quantum algorithms. Considering quantum teleportation, we show that any pure entangled state offers an advantage in terms of causal effects as compared to separable states. This broadness of different uses showcases that, just as in the classical case, the quantification of causal influence has foundational and applied consequences and can lead to a yet totally unexplored tool for quantum information science.Comment: 12 pages, 3 figures. Comments welcome

    Quantum causal models, faithfulness and retrocausality

    Full text link
    Wood and Spekkens (2015) argue that any causal model explaining the EPRB correlations and satisfying no-signalling must also violate the assumption that the model faithfully reproduces the statistical dependences and independences---a so-called "fine-tuning" of the causal parameters; this includes, in particular, retrocausal explanations of the EPRB correlations. I consider this analysis with a view to enumerating the possible responses an advocate of retrocausal explanations might propose. I focus on the response of N\"{a}ger (2015), who argues that the central ideas of causal explanations can be saved if one accepts the possibility of a stable fine-tuning of the causal parameters. I argue that, in light of this view, a violation of faithfulness does not necessarily rule out retrocausal explanations of the EPRB correlations, although it certainly constrains such explanations. I conclude by considering some possible consequences of this type of response for retrocausal explanations

    Quantum Information Processing and Relativistic Quantum Fields

    Full text link
    It is shown that an ideal measurement of a one-particle wave packet state of a relativistic quantum field in Minkowski spacetime enables superluminal signalling. The result holds for a measurement that takes place over an intervention region in spacetime whose extent in time in some frame is longer than the light-crossing time of the packet in that frame. Moreover, these results are shown to apply not only to ideal measurements but also to unitary transformations that rotate two orthogonal one-particle states into each other. In light of these observations, possible restrictions on the allowed types of intervention are considered. A more physical approach to such questions is to construct explicit models of the interventions as interactions between the field and other quantum systems such as detectors. The prototypical Unruh-DeWitt detector couples to the field operator itself and so most likely respects relativistic causality. On the other hand, detector models which couple to a finite set of frequencies of field modes are shown to lead to superluminal signalling. Such detectors do, however, provide successful phenomenological models of atom-qubits interacting with quantum fields in a cavity but are valid only on time scales many orders of magnitude larger than the light-crossing time of the cavity.Comment: 16 pages, 2 figures. Improved abstract and discussion of 'ideal' measurements. References to previous work adde

    Which causal structures might support a quantum-classical gap?

    Full text link
    A causal scenario is a graph that describes the cause and effect relationships between all relevant variables in an experiment. A scenario is deemed `not interesting' if there is no device-independent way to distinguish the predictions of classical physics from any generalised probabilistic theory (including quantum mechanics). Conversely, an interesting scenario is one in which there exists a gap between the predictions of different operational probabilistic theories, as occurs for example in Bell-type experiments. Henson, Lal and Pusey (HLP) recently proposed a sufficient condition for a causal scenario to not be interesting. In this paper we supplement their analysis with some new techniques and results. We first show that existing graphical techniques due to Evans can be used to confirm by inspection that many graphs are interesting without having to explicitly search for inequality violations. For three exceptional cases -- the graphs numbered 15,16,20 in HLP -- we show that there exist non-Shannon type entropic inequalities that imply these graphs are interesting. In doing so, we find that existing methods of entropic inequalities can be greatly enhanced by conditioning on the specific values of certain variables.Comment: 13 pages, 9 figures, 1 bicycle. Added an appendix showing that e-separation is strictly more general than the skeleton method. Added journal referenc
    corecore