657 research outputs found

    Classical planar algebraic curves realizable by quadratic polynomial differential systems

    Get PDF
    In this paper we show planar quadratic polynomial differentialsystems exhibiting as solutions some famous planar invariant algebraic curves. Also we put particular attention to the Darboux integrability of these differential systems.The author is partially supported by a MINECO grant number MTM2014-53703-P and an AGAUR grant number 2014SGR1204. †The author is partially supported by a FEDER-MINECO grant MTM2016-77278-P, a MINECO grant MTM2013-40998-P, and an AGAUR grant number 2014SGR-56

    Phase portraits of quadratic polynomial differential systems having as solution some classical planar algebraic curves of degree 4

    Get PDF
    We classify the phase portraits of quadratic polynomial differential systems having some relevant classic quartic algebraic curves as invariant algebraic curves, i.e. these curves are formed by solution curves of a quadratic polynomial differential system. We show the existence of 25 different global phase portraits in the Poincaré disc for such quadratic polynomial differential systems realizing exactly 14 different invariant algebraic curves of degree 4

    On surfaces with prescribed shape operator

    Full text link
    The problem of immersing a simply connected surface with a prescribed shape operator is discussed. From classical and more recent work, it is known that, aside from some special degenerate cases, such as when the shape operator can be realized by a surface with one family of principal curves being geodesic, the space of such realizations is a convex set in an affine space of dimension at most 3. The cases where this maximum dimension of realizability is achieved have been classified and it is known that there are two such families of shape operators, one depending essentially on three arbitrary functions of one variable (called Type I in this article) and another depending essentially on two arbitrary functions of one variable (called Type II in this article). In this article, these classification results are rederived, with an emphasis on explicit computability of the space of solutions. It is shown that, for operators of either type, their realizations by immersions can be computed by quadrature. Moreover, explicit normal forms for each can be computed by quadrature together with, in the case of Type I, by solving a single linear second order ODE in one variable. (Even this last step can be avoided in most Type I cases.) The space of realizations is discussed in each case, along with some of their remarkable geometric properties. Several explicit examples are constructed (mostly already in the literature) and used to illustrate various features of the problem.Comment: 43 pages, latex2e with amsart, v2: typos corrected and some minor improvements in arguments, minor remarks added. v3: important revision, giving credit for earlier work by others of which the author had been ignorant, minor typo correction

    Global configurations of singularities for quadratic differential systems with exactly two finite singularities of total multiplicity four

    Get PDF
    El títol de la versió pre-print de l'article és: Geometric classification of configurations of singularities with total finite multiplicity four for a class of quadratic systemsAgraïments/Ajudes: The third author is supported by CAPES/DGU BEX 9439-12-9. The fourth and fifth author are supported by NSERC-RGPIN (8528-2010). The fifth author is also supported by the grant 12.839.08.05F from SCSTD of ASM..In this work we consider the problem of classifying all configurations of singularities, both finite and infinite of quadratic differential systems, with respect to the geometric equivalence relation defined in [2]. This relation is deeper than the topological equivalence relation which does not distinguish between a focus and a node or between a strong and a weak focus or between foci (or saddles) of different orders. Such distinctions are however important in the production of limit cycles close to the foci in perturbations of the systems. The notion of geometric equivalence relation of configurations of singularities allows to incorporate all these important geometric features which can be expressed in purely algebraic terms. This equivalence relation is also deeper than the qualitative equivalence relation introduced in [20]. The geometric classification of all configurations of singularities, finite and infinite, of quadratic systems was initiated in [3] where the classification was done for systems with total multiplicity mf of finite singularities less than or equal to one. That work was continued in [4] where the geometric classification was done for the case mf = 2 and two more papers [5] and [6], which cover the case mf = 3. In this article we obtain the geometric classification of singularities, finite and infinite, for the three subclasses of quadratic differential systems with mf = 4 possessing exactly two finite singularities, namely: (i) systems with two double complex singularities (18 configurations); (ii) systems with two double real singularities (33 configurations) and (iii) systems with one triple and one simple real singularities (123 configurations). We also give here the global bifurcation diagrams of configurations of singularities, both finite and infinite, with respect to the geometric equivalence relation, for these subclasses of systems. The bifurcation set of this diagram is algebraic. The bifurcation diagram is done in the 12-dimensional space of parameters and it is expressed in terms of polynomial invariants, fact which gives an algorithm for determining the geometric configuration of singularities for any quadratic system

    Structurally unstable quadratic vector fields of codimension two : families possessing either a cusp point or two finite saddle-nodes

    Get PDF
    The goal of this paper is to contribute to the classification of the phase portraits of planar quadratic differential systems according to their structural stability. Artés et al. (Mem Am Math Soc 134:639, 1998) proved that there exist 44 structurally stable topologically distinct phase portraits in the Poincaré disc modulo limit cycles in this family, and Artés et al. (Structurally unstable quadratic vector fields of codimension one, Springer, Berlin, 2018) showed the existence of at least 204 (at most 211) structurally unstable topologically distinct phase portraits of codimension-one quadratic systems, modulo limit cycles. In this work we begin the classification of planar quadratic systems of codimension two in the structural stability. Combining the sets of codimension-one quadratic vector fields one to each other, we obtain ten new sets. Here we consider set AA obtained by the coalescence of two finite singular points, yielding either a triple saddle, or a triple node, or a cusp point, or two saddle-nodes. We obtain all the possible topological phase portraits of set AA and prove their realization. We got 34 new topologically distinct phase portraits in the Poincaré disc modulo limit cycles. Moreover, in this paper we correct a mistake made by the authors in the book of Artés et al. (Structurally unstable quadratic vector fields of codimension one, Springer, Berlin, 2018) and we reduce to 203 the number of topologically distinct phase portrait of codimension one modulo limit cycles

    Mini-Workshop: Algebraic and Analytic Techniques for Polynomial Vector Fields

    Get PDF
    Polynomial vector fields are in the focus of research in various areas of mathematics and its applications. As a consequence, researchers from rather different disciplines work with polynomial vector fields. The main goal of this mini workshop was to create new and consolidate existing interdisciplinary exchange on the subject
    • …
    corecore