7,263 research outputs found

    Zeno machines and hypercomputation

    Get PDF
    This paper reviews the Church-Turing Thesis (or rather, theses) with reference to their origin and application and considers some models of "hypercomputation", concentrating on perhaps the most straight-forward option: Zeno machines (Turing machines with accelerating clock). The halting problem is briefly discussed in a general context and the suggestion that it is an inevitable companion of any reasonable computational model is emphasised. It is hinted that claims to have "broken the Turing barrier" could be toned down and that the important and well-founded role of Turing computability in the mathematical sciences stands unchallenged.Comment: 11 pages. First submitted in December 2004, substantially revised in July and in November 2005. To appear in Theoretical Computer Scienc

    Non-Turing computations via Malament-Hogarth space-times

    Get PDF
    We investigate the Church-Kalm\'ar-Kreisel-Turing Theses concerning theoretical (necessary) limitations of future computers and of deductive sciences, in view of recent results of classical general relativity theory. We argue that (i) there are several distinguished Church-Turing-type Theses (not only one) and (ii) validity of some of these theses depend on the background physical theory we choose to use. In particular, if we choose classical general relativity theory as our background theory, then the above mentioned limitations (predicted by these Theses) become no more necessary, hence certain forms of the Church-Turing Thesis cease to be valid (in general relativity). (For other choices of the background theory the answer might be different.) We also look at various ``obstacles'' to computing a non-recursive function (by relying on relativistic phenomena) published in the literature and show that they can be avoided (by improving the ``design'' of our future computer). We also ask ourselves, how all this reflects on the arithmetical hierarchy and the analytical hierarchy of uncomputable functions.Comment: Final, published version: 25 pages, LaTex with two eps-figures, journal reference adde

    How Quantum Computers Fail: Quantum Codes, Correlations in Physical Systems, and Noise Accumulation

    Full text link
    The feasibility of computationally superior quantum computers is one of the most exciting and clear-cut scientific questions of our time. The question touches on fundamental issues regarding probability, physics, and computability, as well as on exciting problems in experimental physics, engineering, computer science, and mathematics. We propose three related directions towards a negative answer. The first is a conjecture about physical realizations of quantum codes, the second has to do with correlations in stochastic physical systems, and the third proposes a model for quantum evolutions when noise accumulates. The paper is dedicated to the memory of Itamar Pitowsky.Comment: 16 page

    The physical Church-Turing thesis and the principles of quantum theory

    Full text link
    Notoriously, quantum computation shatters complexity theory, but is innocuous to computability theory. Yet several works have shown how quantum theory as it stands could breach the physical Church-Turing thesis. We draw a clear line as to when this is the case, in a way that is inspired by Gandy. Gandy formulates postulates about physics, such as homogeneity of space and time, bounded density and velocity of information --- and proves that the physical Church-Turing thesis is a consequence of these postulates. We provide a quantum version of the theorem. Thus this approach exhibits a formal non-trivial interplay between theoretical physics symmetries and computability assumptions.Comment: 14 pages, LaTe

    A quantum-information-theoretic complement to a general-relativistic implementation of a beyond-Turing computer

    Get PDF
    There exists a growing literature on the so-called physical Church-Turing thesis in a relativistic spacetime setting. The physical Church-Turing thesis is the conjecture that no computing device that is physically realizable (even in principle) can exceed the computational barriers of a Turing machine. By suggesting a concrete implementation of a beyond-Turing computer in a spacetime setting, Istv\'an N\'emeti and Gyula D\'avid (2006) have shown how an appreciation of the physical Church-Turing thesis necessitates the confluence of mathematical, computational, physical, and indeed cosmological ideas. In this essay, I will honour Istv\'an's seventieth birthday, as well as his longstanding interest in, and his seminal contributions to, this field going back to as early as 1987 by modestly proposing how the concrete implementation in N\'emeti and D\'avid (2006) might be complemented by a quantum-information-theoretic communication protocol between the computing device and the logician who sets the beyond-Turing computer a task such as determining the consistency of Zermelo-Fraenkel set theory. This suggests that even the foundations of quantum theory and, ultimately, quantum gravity may play an important role in determining the validity of the physical Church-Turing thesis.Comment: 27 pages, 5 figures. Forthcoming in Synthese. Matches published versio

    Effective Physical Processes and Active Information in Quantum Computing

    Get PDF
    The recent debate on hypercomputation has arisen new questions both on the computational abilities of quantum systems and the Church-Turing Thesis role in Physics. We propose here the idea of "effective physical process" as the essentially physical notion of computation. By using the Bohm and Hiley active information concept we analyze the differences between the standard form (quantum gates) and the non-standard one (adiabatic and morphogenetic) of Quantum Computing, and we point out how its Super-Turing potentialities derive from an incomputable information source in accordance with Bell's constraints. On condition that we give up the formal concept of "universality", the possibility to realize quantum oracles is reachable. In this way computation is led back to the logic of physical world.Comment: 10 pages; Added references for sections 2 and

    Computable functions, quantum measurements, and quantum dynamics

    Get PDF
    We construct quantum mechanical observables and unitary operators which, if implemented in physical systems as measurements and dynamical evolutions, would contradict the Church-Turing thesis which lies at the foundation of computer science. We conclude that either the Church-Turing thesis needs revision, or that only restricted classes of observables may be realized, in principle, as measurements, and that only restricted classes of unitary operators may be realized, in principle, as dynamics.Comment: 4 pages, REVTE
    • …
    corecore