5,219 research outputs found

    Robust bootstrap procedures for the chain-ladder method

    Get PDF
    Insurers are faced with the challenge of estimating the future reserves needed to handle historic and outstanding claims that are not fully settled. A well-known and widely used technique is the chain-ladder method, which is a deterministic algorithm. To include a stochastic component one may apply generalized linear models to the run-off triangles based on past claims data. Analytical expressions for the standard deviation of the resulting reserve estimates are typically difficult to derive. A popular alternative approach to obtain inference is to use the bootstrap technique. However, the standard procedures are very sensitive to the possible presence of outliers. These atypical observations, deviating from the pattern of the majority of the data, may both inflate or deflate traditional reserve estimates and corresponding inference such as their standard errors. Even when paired with a robust chain-ladder method, classical bootstrap inference may break down. Therefore, we discuss and implement several robust bootstrap procedures in the claims reserving framework and we investigate and compare their performance on both simulated and real data. We also illustrate their use for obtaining the distribution of one year risk measures

    Bayesian Restricted Likelihood Methods: Conditioning on Insufficient Statistics in Bayesian Regression

    Full text link
    Bayesian methods have proven themselves to be successful across a wide range of scientific problems and have many well-documented advantages over competing methods. However, these methods run into difficulties for two major and prevalent classes of problems: handling data sets with outliers and dealing with model misspecification. We outline the drawbacks of previous solutions to both of these problems and propose a new method as an alternative. When working with the new method, the data is summarized through a set of insufficient statistics, targeting inferential quantities of interest, and the prior distribution is updated with the summary statistics rather than the complete data. By careful choice of conditioning statistics, we retain the main benefits of Bayesian methods while reducing the sensitivity of the analysis to features of the data not captured by the conditioning statistics. For reducing sensitivity to outliers, classical robust estimators (e.g., M-estimators) are natural choices for conditioning statistics. A major contribution of this work is the development of a data augmented Markov chain Monte Carlo (MCMC) algorithm for the linear model and a large class of summary statistics. We demonstrate the method on simulated and real data sets containing outliers and subject to model misspecification. Success is manifested in better predictive performance for data points of interest as compared to competing methods

    Robust Estimation of the Generalized Loggamma Model. The R Package robustloggamma

    Get PDF
    robustloggamma is an R package for robust estimation and inference in the generalized loggamma model. We briefly introduce the model, the estimation procedures and the computational algorithms. Then, we illustrate the use of the package with the help of a real data set.Comment: Accepted in Journal of Statistical Softwar

    A robust approach for skewed and heavy-tailed outcomes in the analysis of health care expenditures

    Get PDF
    In this paper robust statistical procedures are presented for the analysis of skewed and heavy-tailed outcomes as they typically occur in health care data. The new estimators and test statistics are extensions of classical maximum likelihood techniques for generalized linear models. In contrast to their classical counterparts, the new robust techniques show lower variability and excellent effciency properties in the presence of small deviations form the assumed model, i.e. when the underlying distribution of the data lies in a neighborhood of the model. A simulation study, an analysis on real data, and a sensitivity analysis confirm the good theoretical statistical properties of the new techniques.Deviations from the model; GLM modeling; health econometrics; heavy tails; robust estimation; robust inference

    A new non-parametric detector of univariate outliers for distributions with unbounded support

    Full text link
    The purpose of this paper is to construct a new non-parametric detector of univariate outliers and to study its asymptotic properties. This detector is based on a Hill's type statistic. It satisfies a unique asymptotic behavior for a large set of probability distributions with positive unbounded support (for instance: for the absolute value of Gaussian, Gamma, Weibull, Student or regular variations distributions). We have illustrated our results by numerical simulations which show the accuracy of this detector with respect to other usual univariate outlier detectors (Tukey, MAD or Local Outlier Factor detectors). The detection of outliers in a database providing the prices of used cars is also proposed as an application to real-life database

    Robust Linear Spectral Unmixing using Anomaly Detection

    Full text link
    This paper presents a Bayesian algorithm for linear spectral unmixing of hyperspectral images that accounts for anomalies present in the data. The model proposed assumes that the pixel reflectances are linear mixtures of unknown endmembers, corrupted by an additional nonlinear term modelling anomalies and additive Gaussian noise. A Markov random field is used for anomaly detection based on the spatial and spectral structures of the anomalies. This allows outliers to be identified in particular regions and wavelengths of the data cube. A Bayesian algorithm is proposed to estimate the parameters involved in the model yielding a joint linear unmixing and anomaly detection algorithm. Simulations conducted with synthetic and real hyperspectral images demonstrate the accuracy of the proposed unmixing and outlier detection strategy for the analysis of hyperspectral images
    corecore