39,742 research outputs found

    Calibrating Generative Models: The Probabilistic Chomsky-Schützenberger Hierarchy

    Get PDF
    A probabilistic Chomsky–Schützenberger hierarchy of grammars is introduced and studied, with the aim of understanding the expressive power of generative models. We offer characterizations of the distributions definable at each level of the hierarchy, including probabilistic regular, context-free, (linear) indexed, context-sensitive, and unrestricted grammars, each corresponding to familiar probabilistic machine classes. Special attention is given to distributions on (unary notations for) positive integers. Unlike in the classical case where the "semi-linear" languages all collapse into the regular languages, using analytic tools adapted from the classical setting we show there is no collapse in the probabilistic hierarchy: more distributions become definable at each level. We also address related issues such as closure under probabilistic conditioning

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    On the power of conditional independence testing under model-X

    Full text link
    For testing conditional independence (CI) of a response Y and a predictor X given covariates Z, the recently introduced model-X (MX) framework has been the subject of active methodological research, especially in the context of MX knockoffs and their successful application to genome-wide association studies. In this paper, we study the power of MX CI tests, yielding quantitative explanations for empirically observed phenomena and novel insights to guide the design of MX methodology. We show that any valid MX CI test must also be valid conditionally on Y and Z; this conditioning allows us to reformulate the problem as testing a point null hypothesis involving the conditional distribution of X. The Neyman-Pearson lemma then implies that the conditional randomization test (CRT) based on a likelihood statistic is the most powerful MX CI test against a point alternative. We also obtain a related optimality result for MX knockoffs. Switching to an asymptotic framework with arbitrarily growing covariate dimension, we derive an expression for the limiting power of the CRT against local semiparametric alternatives in terms of the prediction error of the machine learning algorithm on which its test statistic is based. Finally, we exhibit a resampling-free test with uniform asymptotic Type-I error control under the assumption that only the first two moments of X given Z are known, a significant relaxation of the MX assumption

    End-to-End Kernel Learning with Supervised Convolutional Kernel Networks

    Get PDF
    In this paper, we introduce a new image representation based on a multilayer kernel machine. Unlike traditional kernel methods where data representation is decoupled from the prediction task, we learn how to shape the kernel with supervision. We proceed by first proposing improvements of the recently-introduced convolutional kernel networks (CKNs) in the context of unsupervised learning; then, we derive backpropagation rules to take advantage of labeled training data. The resulting model is a new type of convolutional neural network, where optimizing the filters at each layer is equivalent to learning a linear subspace in a reproducing kernel Hilbert space (RKHS). We show that our method achieves reasonably competitive performance for image classification on some standard "deep learning" datasets such as CIFAR-10 and SVHN, and also for image super-resolution, demonstrating the applicability of our approach to a large variety of image-related tasks.Comment: to appear in Advances in Neural Information Processing Systems (NIPS

    PredNet and Predictive Coding: A Critical Review

    Full text link
    PredNet, a deep predictive coding network developed by Lotter et al., combines a biologically inspired architecture based on the propagation of prediction error with self-supervised representation learning in video. While the architecture has drawn a lot of attention and various extensions of the model exist, there is a lack of a critical analysis. We fill in the gap by evaluating PredNet both as an implementation of the predictive coding theory and as a self-supervised video prediction model using a challenging video action classification dataset. We design an extended model to test if conditioning future frame predictions on the action class of the video improves the model performance. We show that PredNet does not yet completely follow the principles of predictive coding. The proposed top-down conditioning leads to a performance gain on synthetic data, but does not scale up to the more complex real-world action classification dataset. Our analysis is aimed at guiding future research on similar architectures based on the predictive coding theory
    corecore