621 research outputs found

    Classical Algorithms from Quantum and Arthur-Merlin Communication Protocols

    Get PDF
    In recent years, the polynomial method from circuit complexity has been applied to several fundamental problems and obtains the state-of-the-art running times (e.g., R. Williams\u27s n^3 / 2^{Omega(sqrt{log n})} time algorithm for APSP). As observed in [Alman and Williams, STOC 2017], almost all applications of the polynomial method in algorithm design ultimately rely on certain (probabilistic) low-rank decompositions of the computation matrices corresponding to key subroutines. They suggest that making use of low-rank decompositions directly could lead to more powerful algorithms, as the polynomial method is just one way to derive such a decomposition. Inspired by their observation, in this paper, we study another way of systematically constructing low-rank decompositions of matrices which could be used by algorithms - communication protocols. Since their introduction, it is known that various types of communication protocols lead to certain low-rank decompositions (e.g., P protocols/rank, BQP protocols/approximate rank). These are usually interpreted as approaches for proving communication lower bounds, while in this work we explore the other direction. We have the following two generic algorithmic applications of communication protocols: - Quantum Communication Protocols and Deterministic Approximate Counting. Our first connection is that a fast BQP communication protocol for a function f implies a fast deterministic additive approximate counting algorithm for a related pair counting problem. Applying known BQP communication protocols, we get fast deterministic additive approximate counting algorithms for Count-OV (#OV), Sparse Count-OV and Formula of SYM circuits. In particular, our approximate counting algorithm for #OV runs in near-linear time for all dimensions d = o(log^2 n). Previously, even no truly-subquadratic time algorithm was known for d = omega(log n). - Arthur-Merlin Communication Protocols and Faster Satisfying-Pair Algorithms. Our second connection is that a fast AM^{cc} protocol for a function f implies a faster-than-bruteforce algorithm for f-Satisfying-Pair. Using the classical Goldwasser-Sisper AM protocols for approximating set size, we obtain a new algorithm for approximate Max-IP_{n,c log n} in time n^{2 - 1/O(log c)}, matching the state-of-the-art algorithms in [Chen, CCC 2018]. We also apply our second connection to shed some light on long-standing open problems in communication complexity. We show that if the Longest Common Subsequence (LCS) problem admits a fast (computationally efficient) AM^{cc} protocol (polylog(n) complexity), then polynomial-size Formula-SAT admits a 2^{n - n^{1-delta}} time algorithm for any constant delta > 0, which is conjectured to be unlikely by a recent work [Abboud and Bringmann, ICALP 2018]. The same holds even for a fast (computationally efficient) PH^{cc} protocol

    AM with Multiple Merlins

    Get PDF
    We introduce and study a new model of interactive proofs: AM(k), or Arthur-Merlin with k non-communicating Merlins. Unlike with the better-known MIP, here the assumption is that each Merlin receives an independent random challenge from Arthur. One motivation for this model (which we explore in detail) comes from the close analogies between it and the quantum complexity class QMA(k), but the AM(k) model is also natural in its own right. We illustrate the power of multiple Merlins by giving an AM(2) protocol for 3SAT, in which the Merlins' challenges and responses consist of only n^{1/2+o(1)} bits each. Our protocol has the consequence that, assuming the Exponential Time Hypothesis (ETH), any algorithm for approximating a dense CSP with a polynomial-size alphabet must take n^{(log n)^{1-o(1)}} time. Algorithms nearly matching this lower bound are known, but their running times had never been previously explained. Brandao and Harrow have also recently used our 3SAT protocol to show quasipolynomial hardness for approximating the values of certain entangled games. In the other direction, we give a simple quasipolynomial-time approximation algorithm for free games, and use it to prove that, assuming the ETH, our 3SAT protocol is essentially optimal. More generally, we show that multiple Merlins never provide more than a polynomial advantage over one: that is, AM(k)=AM for all k=poly(n). The key to this result is a subsampling theorem for free games, which follows from powerful results by Alon et al. and Barak et al. on subsampling dense CSPs, and which says that the value of any free game can be closely approximated by the value of a logarithmic-sized random subgame.Comment: 48 page

    Two Results about Quantum Messages

    Full text link
    We show two results about the relationship between quantum and classical messages. Our first contribution is to show how to replace a quantum message in a one-way communication protocol by a deterministic message, establishing that for all partial Boolean functions f:{0,1}n×{0,1}m{0,1}f:\{0,1\}^n\times\{0,1\}^m\to\{0,1\} we have DAB(f)O(QAB,(f)m)D^{A\to B}(f)\leq O(Q^{A\to B,*}(f)\cdot m). This bound was previously known for total functions, while for partial functions this improves on results by Aaronson, in which either a log-factor on the right hand is present, or the left hand side is RAB(f)R^{A\to B}(f), and in which also no entanglement is allowed. In our second contribution we investigate the power of quantum proofs over classical proofs. We give the first example of a scenario, where quantum proofs lead to exponential savings in computing a Boolean function. The previously only known separation between the power of quantum and classical proofs is in a setting where the input is also quantum. We exhibit a partial Boolean function ff, such that there is a one-way quantum communication protocol receiving a quantum proof (i.e., a protocol of type QMA) that has cost O(logn)O(\log n) for ff, whereas every one-way quantum protocol for ff receiving a classical proof (protocol of type QCMA) requires communication Ω(n/logn)\Omega(\sqrt n/\log n)

    Quantum superiority for verifying NP-complete problems with linear optics

    Full text link
    Demonstrating quantum superiority for some computational task will be a milestone for quantum technologies and would show that computational advantages are possible not only with a universal quantum computer but with simpler physical devices. Linear optics is such a simpler but powerful platform where classically-hard information processing tasks, such as Boson Sampling, can be in principle implemented. In this work, we study a fundamentally different type of computational task to achieve quantum superiority using linear optics, namely the task of verifying NP-complete problems. We focus on a protocol by Aaronson et al. (2008) that uses quantum proofs for verification. We show that the proof states can be implemented in terms of a single photon in an equal superposition over many optical modes. Similarly, the tests can be performed using linear-optical transformations consisting of a few operations: a global permutation of all modes, simple interferometers acting on at most four modes, and measurement using single-photon detectors. We also show that the protocol can tolerate experimental imperfections.Comment: 10 pages, 6 figures, minor corrections, results unchange

    The Power of Unentanglement

    Get PDF
    The class QMA(k). introduced by Kobayashi et al., consists of all languages that can be verified using k unentangled quantum proofs. Many of the simplest questions about this class have remained embarrassingly open: for example, can we give any evidence that k quantum proofs are more powerful than one? Does QMA(k) = QMA(2) for k ≥ 2? Can QMA(k) protocols be amplified to exponentially small error? In this paper, we make progress on all of the above questions. * We give a protocol by which a verifier can be convinced that a 3SAT formula of size m is satisfiable, with constant soundness, given Õ (√m) unentangled quantum witnesses with O(log m) qubits each. Our protocol relies on the existence of very short PCPs. * We show that assuming a weak version of the Additivity Conjecture from quantum information theory, any QMA(2) protocol can be amplified to exponentially small error, and QMA(k) = QMA(2) for all k ≥ 2. * We prove the nonexistence of "perfect disentanglers" for simulating multiple Merlins with one

    QIP = PSPACE

    Full text link
    We prove that the complexity class QIP, which consists of all problems having quantum interactive proof systems, is contained in PSPACE. This containment is proved by applying a parallelized form of the matrix multiplicative weights update method to a class of semidefinite programs that captures the computational power of quantum interactive proofs. As the containment of PSPACE in QIP follows immediately from the well-known equality IP = PSPACE, the equality QIP = PSPACE follows.Comment: 21 pages; v2 includes corrections and minor revision

    Testing product states, quantum Merlin-Arthur games and tensor optimisation

    Full text link
    We give a test that can distinguish efficiently between product states of n quantum systems and states which are far from product. If applied to a state psi whose maximum overlap with a product state is 1-epsilon, the test passes with probability 1-Theta(epsilon), regardless of n or the local dimensions of the individual systems. The test uses two copies of psi. We prove correctness of this test as a special case of a more general result regarding stability of maximum output purity of the depolarising channel. A key application of the test is to quantum Merlin-Arthur games with multiple Merlins, where we obtain several structural results that had been previously conjectured, including the fact that efficient soundness amplification is possible and that two Merlins can simulate many Merlins: QMA(k)=QMA(2) for k>=2. Building on a previous result of Aaronson et al, this implies that there is an efficient quantum algorithm to verify 3-SAT with constant soundness, given two unentangled proofs of O(sqrt(n) polylog(n)) qubits. We also show how QMA(2) with log-sized proofs is equivalent to a large number of problems, some related to quantum information (such as testing separability of mixed states) as well as problems without any apparent connection to quantum mechanics (such as computing injective tensor norms of 3-index tensors). As a consequence, we obtain many hardness-of-approximation results, as well as potential algorithmic applications of methods for approximating QMA(2) acceptance probabilities. Finally, our test can also be used to construct an efficient test for determining whether a unitary operator is a tensor product, which is a generalisation of classical linearity testing.Comment: 44 pages, 1 figure, 7 appendices; v6: added references, rearranged sections, added discussion of connections to classical CS. Final version to appear in J of the AC
    corecore