33,515 research outputs found

    Class-Based Interference Management in Wireless Networks

    Get PDF
    Technological advancement has brought revolutionary change in the converged wireless networks. Due to the existence of different types of traffic, provisioning of Quality of Service (QoS) becomes a challenge in the wireless networks. In case of a congested network, resource allocation has emerged as an effective way to provide the excessive users with desirable QoS. Since QoS for non-real-time traffic are not as strict as for real-time traffic, the unoccupied channels of the adjacent cells can be assigned to the non-real-time traffic to retain QoS for real-time traffic. This results in the intensified bandwidth utilization as well as less interference for the real-time traffic. In this paper, we propose an effective radio resource management scheme that relies on the dynamically assigned bandwidth allocation process. In case of interference management, we classify the traffic into real-time traffic and non-real-time traffic and give priority to the real-time traffic. According to our scheme, the real-time traffic among the excessive number of users are reassigned to the original channels which have been occupied by non-real-time traffic and the non-real-time traffic are allocated to the assigned channels of those real-time traffic. The architecture allows improved signal to interference plus noise ratio (SINR) for real-time traffic along with intensification in the bandwidth utilization of the network. Besides, the increased system capacity and lower outage probability of the network bear the significance of the proposed scheme

    Matching Theory for Future Wireless Networks: Fundamentals and Applications

    Full text link
    The emergence of novel wireless networking paradigms such as small cell and cognitive radio networks has forever transformed the way in which wireless systems are operated. In particular, the need for self-organizing solutions to manage the scarce spectral resources has become a prevalent theme in many emerging wireless systems. In this paper, the first comprehensive tutorial on the use of matching theory, a Nobelprize winning framework, for resource management in wireless networks is developed. To cater for the unique features of emerging wireless networks, a novel, wireless-oriented classification of matching theory is proposed. Then, the key solution concepts and algorithmic implementations of this framework are exposed. Then, the developed concepts are applied in three important wireless networking areas in order to demonstrate the usefulness of this analytical tool. Results show how matching theory can effectively improve the performance of resource allocation in all three applications discussed

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Wireless Interference Identification with Convolutional Neural Networks

    Full text link
    The steadily growing use of license-free frequency bands requires reliable coexistence management for deterministic medium utilization. For interference mitigation, proper wireless interference identification (WII) is essential. In this work we propose the first WII approach based upon deep convolutional neural networks (CNNs). The CNN naively learns its features through self-optimization during an extensive data-driven GPU-based training process. We propose a CNN example which is based upon sensing snapshots with a limited duration of 12.8 {\mu}s and an acquisition bandwidth of 10 MHz. The CNN differs between 15 classes. They represent packet transmissions of IEEE 802.11 b/g, IEEE 802.15.4 and IEEE 802.15.1 with overlapping frequency channels within the 2.4 GHz ISM band. We show that the CNN outperforms state-of-the-art WII approaches and has a classification accuracy greater than 95% for signal-to-noise ratio of at least -5 dB
    • …
    corecore