699 research outputs found

    Stability of interconnected impulsive systems with and without time-delays using Lyapunov methods

    Full text link
    In this paper we consider input-to-state stability (ISS) of impulsive control systems with and without time-delays. We prove that if the time-delay system possesses an exponential Lyapunov-Razumikhin function or an exponential Lyapunov-Krasovskii functional, then the system is uniformly ISS provided that the average dwell-time condition is satisfied. Then, we consider large-scale networks of impulsive systems with and without time-delays and we prove that the whole network is uniformly ISS under a small-gain and a dwell-time condition. Moreover, these theorems provide us with tools to construct a Lyapunov function (for time-delay systems - a Lyapunov-Krasovskii functional or a Lyapunov-Razumikhin function) and the corresponding gains of the whole system, using the Lyapunov functions of the subsystems and the internal gains, which are linear and satisfy the small-gain condition. We illustrate the application of the main results on examples

    On Input-to-State Stability of Impulsive Stochastic Systems with Time Delays

    Get PDF
    This paper is concerned with pth moment input-to-state stability (p-ISS) and stochastic input-to-state stability (SISS) of impulsive stochastic systems with time delays. Razumikhin-type theorems ensuring p-ISS/SISS are established for the mentioned systems with external input affecting both the continuous and the discrete dynamics. It is shown that when the impulse-free delayed stochastic dynamics are p-ISS/SISS but the impulses are destabilizing, the p-ISS/SISS property of the impulsive stochastic systems can be preserved if the length of the impulsive interval is large enough. In particular, if the impulse-free delayed stochastic dynamics are p-ISS/SISS and the discrete dynamics are marginally stable for the zero input, the impulsive stochastic system is p-ISS/SISS regardless of how often or how seldom the impulses occur. To overcome the difficulties caused by the coexistence of time delays, impulses, and stochastic effects, Razumikhin techniques and piecewise continuous Lyapunov functions as well as stochastic analysis techniques are involved together. An example is provided to illustrate the effectiveness and advantages of our results

    Lyapunov Conditions for Input-to-State Stability of Impulsive Systems

    Get PDF
    This paper introduces appropriate concepts of input-to-state stability (ISS) and integral-ISS for impulsive systems, i.e., dynamical systems that evolve according to ordinary differential equations most of the time, but occasionally exhibit discontinuities (or impulses). We provide a set of Lyapunov-based sufficient conditions for establishing these ISS properties. When the continuous dynamics are ISS but the discrete dynamics that govern the impulses are not, the impulses should not occur too frequently, which is formalized in terms of an average dwell-time (ADT) condition. Conversely, when the impulse dynamics are ISS but the continuous dynamics are not, there must not be overly long intervals between impulses, which is formalized in terms of a novel reverse ADT condition. We also investigate the cases where (i) both the continuous and discrete dynamics are ISS and (ii) one of these is ISS and the other only marginally stable for the zero input, while sharing a common Lyapunov function. In the former case we obtain a stronger notion of ISS, for which a necessary and sufficient Lyapunov characterization is available. The use of the tools developed herein is illustrated through examples from a Micro-Electro-Mechanical System (MEMS) oscillator and a problem of remote estimation over a communication network

    Robust output stabilization: improving performance via supervisory control

    Full text link
    We analyze robust stability, in an input-output sense, of switched stable systems. The primary goal (and contribution) of this paper is to design switching strategies to guarantee that input-output stable systems remain so under switching. We propose two types of {\em supervisors}: dwell-time and hysteresis based. While our results are stated as tools of analysis they serve a clear purpose in design: to improve performance. In that respect, we illustrate the utility of our findings by concisely addressing a problem of observer design for Lur'e-type systems; in particular, we design a hybrid observer that ensures ``fast'' convergence with ``low'' overshoots. As a second application of our main results we use hybrid control in the context of synchronization of chaotic oscillators with the goal of reducing control effort; an originality of the hybrid control in this context with respect to other contributions in the area is that it exploits the structure and chaotic behavior (boundedness of solutions) of Lorenz oscillators.Comment: Short version submitted to IEEE TA

    Input-to-state stability of infinite-dimensional control systems

    Get PDF
    We define the notion of local ISS-Lyapunov function and prove, that existence of a local ISS-Lyapunov function implies local ISS (LISS) of the system. Then we consider infinite-dimensional systems generated by differential equations in Banach spaces. We prove, that an interconnection of such systems is ISS if all the subsystems are ISS and the small-gain condition holds. Next we show that a system is LISS provided its linearization is ISS. In the second part of the thesis we deal with infinite-dimensional impulsive systems. We prove, that existence of an ISS Lyapunov function (not necessarily exponential) for an impulsive system implies ISS of the system over impulsive sequences satisfying nonlinear fixed dwell-time condition. Also we prove, that an impulsive system, which possesses an exponential ISS Lyapunov function is uniform ISS over impulse time sequences, satisfying the generalized average dwell-time condition. Then we generalize small-gain theorems to the case of impulsive systems
    corecore