6,512 research outputs found

    Geometry- and Accuracy-Preserving Random Forest Proximities with Applications

    Get PDF
    Many machine learning algorithms use calculated distances or similarities between data observations to make predictions, cluster similar data, visualize patterns, or generally explore the data. Most distances or similarity measures do not incorporate known data labels and are thus considered unsupervised. Supervised methods for measuring distance exist which incorporate data labels and thereby exaggerate separation between data points of different classes. This approach tends to distort the natural structure of the data. Instead of following similar approaches, we leverage a popular algorithm used for making data-driven predictions, known as random forests, to naturally incorporate data labels into similarity measures known as random forest proximities. In this dissertation, we explore previously defined random forest proximities and demonstrate their weaknesses in popular proximity-based applications. Additionally, we develop a new proximity definition that can be used to recreate the random forest’s predictions. We call these random forest-geometry-and accuracy-Preserving proximities or RF-GAP. We show by proof and empirical demonstration can be used to perfectly reconstruct the random forest’s predictions and, as a result, we argue that RF-GAP proximities provide a truer representation of the random forest’s learning when used in proximity-based applications. We provide evidence to suggest that RF-GAP proximities improve applications including imputing missing data, detecting outliers, and visualizing the data. We also introduce a new random forest proximity-based technique that can be used to generate 2- or 3-dimensional data representations which can be used as a tool to visually explore the data. We show that this method does well at portraying the relationship between data variables and the data labels. We show quantitatively and qualitatively that this method surpasses other existing methods for this task

    High-dimensional non-Gaussian data analysis based on sample relationship

    Get PDF
    High-dimensional data are omnipresent. Although many statistical methods developed for analysing high-dimensional data adopt the normality assumption, the Gaussian distribution could be a poor approximation of real data in many applications. In this thesis, we investigate how to properly analyse such high-dimensional non-Gaussian data. As quantifying sample relationships, such as measuring the inter-sample proximity and determining neighbours for samples, is an important step in numerous statistical approaches, this thesis develops three methods for analysing different high-dimensional non-Gaussian data types based on the sample relationship: dimension reduction for single cell RNA-sequencing data with missingness with a proposed proximity measure, dimension reduction for data of small counts with a developed proximity measure, and modelling skewed survival data with a proposed procedure of identifying neighbours for samples. In chapter 3, I develop an unbiased estimator of the Gram matrix, which characterises the proximity between samples. The proposed estimator improves a broad spectrum of dimension reduction methods when applied to single cell RNA-sequencing data with missingness. In addition, the consequences of directly applying existing dimension reduction methods to data with missingness are empirically and theoretically clarified. In chapter 4, I develop a dissimilarity measure for count data with an excess of zeros based on the Kullback-Leibler divergence and the empirical Bayes estimators. The proposed measure is shown to have better discriminative power compared with other popular measures. The proposed measure boosts the performance of standard dimension reduction methods on count data containing many zeros. In chapter 5, I clarify that graphs derived from features themselves can be beneficial for the analysis of high-dimensional survival data when used in graph convolutional networks. Besides, a sequential forward floating selection algorithm is proposed to simultaneously perform survival analysis and unveil the local neighbourhoods of samples with the aid of graph convolutional networks

    Similarity Measures for Clustering SNP and Epidemiological Data

    Get PDF
    The issue of suitable similarity measures for a joint consideration of so called SNP data and epidemiological variables arises from the GENICA (Interdisciplinary Study Group on Gene Environment Interaction and Breast Cancer in Germany) casecontrol study of sporadic breast cancer. The GENICA study aims to investigate the influence and interaction of single nucleotide polymorphic (SNP) loci and exogenous risk factors. A single nucleotide polymorphism is a point mutation that is present in at least 1 % of a population. SNPs are the most common form of human genetic variations. In particular, we consider 43 SNP loci in genes involved in the metabolism of hormones, xenobiotics and drugs as well as in the repair of DNA. Assuming that these single nucleotide changes may lead, for instance, to altered enzymes or to a reduced or enhanced amount of the original enzymes – with each alteration alone having minor effects – the aim is to detect combinations of SNPs that under certain environmental conditions increase the risk of sporadic breast cancer. The search for patterns in the present data set may be performed by a variety of clustering and classification approaches. I consider here the problem of suitable measures of proximity of two variables or subjects as an indispensable basis for a further cluster analysis. In the present data situation these measures have to be able to handle different numbers and meaning of categories of nominal scaled data as well as data of different scales. Generally, clustering approaches are a useful tool to detect structures and to generate hypothesis about potential relationships in complex data situations. Searching for patterns in the data there are two possible objectives: the identification of groups of similar objects or subjects or the identification of groups of similar variables within the whole or within subpopulations. The different objectives imply different requirements on the measures of similarity. Comparing the individual genetic profiles as well as comparing the genetic information across subpopulations I discuss possible choices of similarity measures suitable for genetic and epidemiological data, in particular, measures based on the ÷2-statistic, Flexible Matching Coefficients and combinations of similarity measures. --GENICA,single nucleotide polymorphism (SNP),sporadic breast cancer,similarity,cluster analysis,Flexible Matching Coefficient

    Generalization of form in visual pattern classification.

    Get PDF
    Human observers were trained to criterion in classifying compound Gabor signals with sym- metry relationships, and were then tested with each of 18 blob-only versions of the learning set. General- ization to dark-only and light-only blob versions of the learning signals, as well as to dark-and-light blob versions was found to be excellent, thus implying virtually perfect generalization of the ability to classify mirror-image signals. The hypothesis that the learning signals are internally represented in terms of a 'blob code' with explicit labelling of contrast polarities was tested by predicting observed generalization behaviour in terms of various types of signal representations (pixelwise, Laplacian pyramid, curvature pyramid, ON/OFF, local maxima of Laplacian and curvature operators) and a minimum-distance rule. Most representations could explain generalization for dark-only and light-only blob patterns but not for the high-thresholded versions thereof. This led to the proposal of a structure-oriented blob-code. Whether such a code could be used in conjunction with simple classifiers or should be transformed into a propo- sitional scheme of representation operated upon by a rule-based classification process remains an open question

    Similarity Measures for Clustering SNP Data

    Get PDF
    The issue of suitable similarity measures for a particular kind of genetic data – so called SNP data – arises from the GENICA (Interdisciplinary Study Group on Gene Environment Interaction and Breast Cancer in Germany) case-control study of sporadic breast cancer. The GENICA study aims to investigate the influence and interaction of single nucleotide polymorphic (SNP) loci and exogenous risk factors. A single nucleotide polymorphism is a point mutation that is present in at least 1 % of a population. SNPs are the most common form of human genetic variations. In particular, we consider 65 SNP loci and 2 insertions of longer sequences in genes involved in the metabolism of hormones, xenobiotics and drugs as well as in the repair of DNA and signal transduction. Assuming that these single nucleotide changes may lead, for instance, to altered enzymes or to a reduced or enhanced amount of the original enzymes – with each alteration alone having minor effects – we aim to detect combinations of SNPs that under certain environmental conditions increase the risk of sporadic breast cancer. The search for patterns in the present data set may be performed by a variety of clustering and classification approaches. We consider here the problem of suitable measures of proximity of two variables or subjects as an indispensable basis for a further cluster analysis. Generally, clustering approaches are a useful tool to detect structures and to generate hypothesis about potential relationships in complex data situations. Searching for patterns in the data there are two possible objectives: the identification of groups of similar objects or subjects or the identification of groups of similar variables within the whole or within subpopulations. Comparing the individual genetic profiles as well as comparing the genetic information across subpopulations we discuss possible choices of similarity measures, in particular similarity measures based on the counts of matches and mismatches. New matching coefficients are introduced with a more flexible weighting scheme to account for the general problem of the comparison of SNP data: The large proportion of homozygous reference sequences relative to the homo- and heterozygous SNPs is masking the accordances and differences of interest. --GENICA,single nucleotide polymorphism (SNP),sporadic breast cancer,similarity,Matching Coefficient,Flexible Matching Coefficient

    Manifold Learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering

    Get PDF
    Purpose To investigate whether nonlinear dimensionality reduction improves unsupervised classification of 1H MRS brain tumor data compared with a linear method. Methods In vivo single-voxel 1H magnetic resonance spectroscopy (55 patients) and 1H magnetic resonance spectroscopy imaging (MRSI) (29 patients) data were acquired from histopathologically diagnosed gliomas. Data reduction using Laplacian eigenmaps (LE) or independent component analysis (ICA) was followed by k-means clustering or agglomerative hierarchical clustering (AHC) for unsupervised learning to assess tumor grade and for tissue type segmentation of MRSI data. Results An accuracy of 93% in classification of glioma grade II and grade IV, with 100% accuracy in distinguishing tumor and normal spectra, was obtained by LE with unsupervised clustering, but not with the combination of k-means and ICA. With 1H MRSI data, LE provided a more linear distribution of data for cluster analysis and better cluster stability than ICA. LE combined with k-means or AHC provided 91% accuracy for classifying tumor grade and 100% accuracy for identifying normal tissue voxels. Color-coded visualization of normal brain, tumor core, and infiltration regions was achieved with LE combined with AHC. Conclusion Purpose To investigate whether nonlinear dimensionality reduction improves unsupervised classification of 1H MRS brain tumor data compared with a linear method. Methods In vivo single-voxel 1H magnetic resonance spectroscopy (55 patients) and 1H magnetic resonance spectroscopy imaging (MRSI) (29 patients) data were acquired from histopathologically diagnosed gliomas. Data reduction using Laplacian eigenmaps (LE) or independent component analysis (ICA) was followed by k-means clustering or agglomerative hierarchical clustering (AHC) for unsupervised learning to assess tumor grade and for tissue type segmentation of MRSI data. Results An accuracy of 93% in classification of glioma grade II and grade IV, with 100% accuracy in distinguishing tumor and normal spectra, was obtained by LE with unsupervised clustering, but not with the combination of k-means and ICA. With 1H MRSI data, LE provided a more linear distribution of data for cluster analysis and better cluster stability than ICA. LE combined with k-means or AHC provided 91% accuracy for classifying tumor grade and 100% accuracy for identifying normal tissue voxels. Color-coded visualization of normal brain, tumor core, and infiltration regions was achieved with LE combined with AHC. Conclusion The LE method is promising for unsupervised clustering to separate brain and tumor tissue with automated color-coding for visualization of 1H MRSI data after cluster analysis

    Band-based similarity indices for gene expression classification and clustering

    Get PDF
    The concept of depth induces an ordering from centre outwards in multivariate data. Most depth definitions are unfeasible for dimensions larger than three or four, but the Modified Band Depth (MBD) is a notable exception that has proven to be a valuable tool in the analysis of high-dimensional gene expression data. This depth definition relates the centrality of each individual to its (partial) inclusion in all possible bands formed by elements of the data set. We assess (dis)similarity between pairs of observations by accounting for such bands and constructing binary matrices associated to each pair. From these, contingency tables are calculated and used to derive standard similarity indices. Our approach is computationally efficient and can be applied to bands formed by any number of observations from the data set. We have evaluated the performance of several band-based similarity indices with respect to that of other classical distances in standard classification and clustering tasks in a variety of simulated and real data sets. However, the use of the method is not restricted to these, the extension to other similarity coefficients being straightforward. Our experiments show the benefits of our technique, with some of the selected indices outperforming, among others, the Euclidean distance.This work has been financially supported by the FEDER/ Ministerio de Ciencia, Innovación y Universidades- Agencia Estatal de Investigación, Grant Numbers FIS2017-84440-C2-2-P and MTM2017-84446-C2-2-R, and by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M23), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation).Publicad
    • …
    corecore