3,378 research outputs found

    Classification of high dimensional and imbalanced hyperspectral imagery data

    Get PDF
    The present paper addresses the problem of the classification of hyperspectral images with multiple imbalanced classes and very high dimensionality. Class imbalance is handled by resampling the data set, whereas PCA is applied to reduce the number of spectral bands. This is a preliminary study that pursues to investigate the benefits of using together these two techniques, and also to evaluate the application order that leads to the best classification performance. Experimental results demonstrate the significance of combining these preprocessing tools to improve the performance of hyperspectral imagery classification. Although it seems that the most effective order of application corresponds to first a resampling algorithm and then PCA, this is a question that still needs a much more thorough investigationPartially supported by the Spanish Ministry of Education and Science under grants CSD2007–00018, AYA2008–05965–0596–C04–04/ESP and TIN2009–14205–C04–04, and by Fundació Caixa Castelló–Bancaixa under grant P1–1B2009–0

    Exploring synergetic effects of dimensionality reduction and resampling tools on hyperspectral imagery data classification

    Get PDF
    The present paper addresses the problem of the classification of hyperspectral images with multiple imbalanced classes and very high dimensionality. Class imbalance is handled by resampling the data set, whereas PCA and a supervised filter are applied to reduce the number of spectral bands. This is a preliminary study that pursues to investigate the benefits of combining several techniques to tackle the imbalance and the high dimensionality problems, and also to evaluate the order of application that leads to the best classification performance. Experimental results demonstrate the significance of using together these two preprocessing tools to improve the performance of hyperspectral imagery classification. Although it seems that the most effective order corresponds to first a resampling strategy and then a feature (or extraction) selection algorithm, this is a question that still needs a much more thorough investigation in the futureThis work has partially been supported by the Spanish Ministry of Education and Science under grants CSD2007–00018, AYA2008–05965–0596 and TIN2009–14205, the Fundació Caixa Castelló–Bancaixa under grant P1–1B2009–04, and the Generalitat Valenciana under grant PROMETEO/2010/02

    Coupling different methods for overcoming the class imbalance problem

    Get PDF
    Many classification problems must deal with imbalanced datasets where one class \u2013 the majority class \u2013 outnumbers the other classes. Standard classification methods do not provide accurate predictions in this setting since classification is generally biased towards the majority class. The minority classes are oftentimes the ones of interest (e.g., when they are associated with pathological conditions in patients), so methods for handling imbalanced datasets are critical. Using several different datasets, this paper evaluates the performance of state-of-the-art classification methods for handling the imbalance problem in both binary and multi-class datasets. Different strategies are considered, including the one-class and dimension reduction approaches, as well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the proposed ensemble does not need to be tuned separately for each dataset and outperforms all the other tested approaches. To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions (training/test) are publicly available and have already been used in the open literature: as a consequence, it is possible to report a fair comparison among different approaches in the literature. Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available at https://www.dei.unipd.it/node/2357

    On the relevance of preprocessing in predictive maintenance for dynamic systems

    Get PDF
    The complexity involved in the process of real-time data-driven monitoring dynamic systems for predicted maintenance is usually huge. With more or less in-depth any data-driven approach is sensitive to data preprocessing, understood as any data treatment prior to the application of the monitoring model, being sometimes crucial for the final development of the employed monitoring technique. The aim of this work is to quantify the sensitiveness of data-driven predictive maintenance models in dynamic systems in an exhaustive way. We consider a couple of predictive maintenance scenarios, each of them defined by some public available data. For each scenario, we consider its properties and apply several techniques for each of the successive preprocessing steps, e.g. data cleaning, missing values treatment, outlier detection, feature selection, or imbalance compensation. The pretreatment configurations, i.e. sequential combinations of techniques from different preprocessing steps, are considered together with different monitoring approaches, in order to determine the relevance of data preprocessing for predictive maintenance in dynamical systems

    New Hybrid Data Preprocessing Technique for Highly Imbalanced Dataset

    Get PDF
    One of the most challenging problems in the real-world dataset is the rising numbers of imbalanced data. The fact that the ratio of the majorities is higher than the minorities will lead to misleading results as conventional machine learning algorithms were designed on the assumption of equal class distribution. The purpose of this study is to build a hybrid data preprocessing approach to deal with the class imbalance issue by applying resampling approaches and CSL for fraud detection using a real-world dataset. The proposed hybrid approach consists of two steps in which the first step is to compare several resampling approaches to find the optimum technique with the highest performance in the validation set. While the second method used CSL with optimal weight ratio on the resampled data from the first step. The hybrid technique was found to have a positive impact of 0.987, 0.974, 0.847, 0.853 F2-measure for RF, DT, XGBOOST and LGBM, respectively. Additionally, relative to the conventional methods, it obtained the highest performance for prediction
    • …
    corecore