4,038 research outputs found

    Maximal uniform convergence rates in parametric estimation problems

    Get PDF
    This paper considers parametric estimation problems with independent, identically nonregularly distributed data. It focuses on rate efficiency, in the sense of maximal possible convergence rates of stochastically bounded estimators, as an optimality criterion, largely unexplored in parametric estimation. Under mild conditions, the Hellinger metric, defined on the space of parametric probability measures, is shown to be an essentially universally applicable tool to determine maximal possible convergence rates. These rates are shown to be attainable in general classes of parametric estimation problems

    Asymptotic Properties for Methods Combining Minimum Hellinger Distance Estimates and Bayesian Nonparametric Density Estimates

    Get PDF
    In frequentist inference, minimizing the Hellinger distance between a kernel density estimate and a parametric family produces estimators that are both robust to outliers and statistically efficienty when the parametric model is correct. This paper seeks to extend these results to the use of nonparametric Bayesian density estimators within disparity methods. We propose two estimators: one replaces the kernel density estimator with the expected posterior density from a random histogram prior; the other induces a posterior over parameters through the posterior for the random histogram. We show that it is possible to adapt the mathematical machinery of efficient influence functions from semiparametric models to demonstrate that both our estimators are efficient in the sense of achieving the Cramer-Rao lower bound. We further demonstrate a Bernstein-von-Mises result for our second estimator indicating that it's posterior is asymptotically Gaussian. In addition, the robustness properties of classical minimum Hellinger distance estimators continue to hold

    Bayes and maximum likelihood for L1L^1-Wasserstein deconvolution of Laplace mixtures

    Full text link
    We consider the problem of recovering a distribution function on the real line from observations additively contaminated with errors following the standard Laplace distribution. Assuming that the latent distribution is completely unknown leads to a nonparametric deconvolution problem. We begin by studying the rates of convergence relative to the L2L^2-norm and the Hellinger metric for the direct problem of estimating the sampling density, which is a mixture of Laplace densities with a possibly unbounded set of locations: the rate of convergence for the Bayes' density estimator corresponding to a Dirichlet process prior over the space of all mixing distributions on the real line matches, up to a logarithmic factor, with the n3/8log1/8nn^{-3/8}\log^{1/8}n rate for the maximum likelihood estimator. Then, appealing to an inversion inequality translating the L2L^2-norm and the Hellinger distance between general kernel mixtures, with a kernel density having polynomially decaying Fourier transform, into any LpL^p-Wasserstein distance, p1p\geq1, between the corresponding mixing distributions, provided their Laplace transforms are finite in some neighborhood of zero, we derive the rates of convergence in the L1L^1-Wasserstein metric for the Bayes' and maximum likelihood estimators of the mixing distribution. Merging in the L1L^1-Wasserstein distance between Bayes and maximum likelihood follows as a by-product, along with an assessment on the stochastic order of the discrepancy between the two estimation procedures
    corecore