402 research outputs found

    Exploiting Structural Complexity for Robust and Rapid Hyperspectral Imaging

    Full text link
    This paper presents several strategies for spectral de-noising of hyperspectral images and hypercube reconstruction from a limited number of tomographic measurements. In particular we show that the non-noisy spectral data, when stacked across the spectral dimension, exhibits low-rank. On the other hand, under the same representation, the spectral noise exhibits a banded structure. Motivated by this we show that the de-noised spectral data and the unknown spectral noise and the respective bands can be simultaneously estimated through the use of a low-rank and simultaneous sparse minimization operation without prior knowledge of the noisy bands. This result is novel for for hyperspectral imaging applications. In addition, we show that imaging for the Computed Tomography Imaging Systems (CTIS) can be improved under limited angle tomography by using low-rank penalization. For both of these cases we exploit the recent results in the theory of low-rank matrix completion using nuclear norm minimization

    Dimensionality Reduction of Hyperspectral Imagery Using Random Projections

    Get PDF
    Hyperspectral imagery is often associated with high storage and transmission costs. Dimensionality reduction aims to reduce the time and space complexity of hyperspectral imagery by projecting data into a low-dimensional space such that all the important information in the data is preserved. Dimensionality-reduction methods based on transforms are widely used and give a data-dependent representation that is unfortunately costly to compute. Recently, there has been a growing interest in data-independent representations for dimensionality reduction; of particular prominence are random projections which are attractive due to their computational efficiency and simplicity of implementation. This dissertation concentrates on exploring the realm of computationally fast and efficient random projections by considering projections based on a random Hadamard matrix. These Hadamard-based projections are offered as an alternative to more widely used random projections based on dense Gaussian matrices. Such Hadamard matrices are then coupled with a fast singular value decomposition in order to implement a two-stage dimensionality reduction that marries the computational benefits of the data-independent random projection to the structure-capturing capability of the data-dependent singular value transform. Finally, random projections are applied in conjunction with nonnegative least squares to provide a computationally lightweight methodology for the well-known spectral-unmixing problem. Overall, it is seen that random projections offer a computationally efficient framework for dimensionality reduction that permits hyperspectral-analysis tasks such as unmixing and classification to be conducted in a lower-dimensional space without sacrificing analysis performance while reducing computational costs significantly

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Covariance Estimation from Compressive Data Partitions using a Projected Gradient-based Algorithm

    Full text link
    Covariance matrix estimation techniques require high acquisition costs that challenge the sampling systems' storing and transmission capabilities. For this reason, various acquisition approaches have been developed to simultaneously sense and compress the relevant information of the signal using random projections. However, estimating the covariance matrix from the random projections is an ill-posed problem that requires further information about the data, such as sparsity, low rank, or stationary behavior. Furthermore, this approach fails using high compression ratios. Therefore, this paper proposes an algorithm based on the projected gradient method to recover a low-rank or Toeplitz approximation of the covariance matrix. The proposed algorithm divides the data into subsets projected onto different subspaces, assuming that each subset contains an approximation of the signal statistics, improving the inverse problem's condition. The error induced by this assumption is analytically derived along with the convergence guarantees of the proposed method. Extensive simulations show that the proposed algorithm can effectively recover the covariance matrix of hyperspectral images with high compression ratios (8-15% approx) in noisy scenarios. Additionally, simulations and theoretical results show that filtering the gradient reduces the estimator's error recovering up to twice the number of eigenvectors.Comment: submitted to IEEE Transactions on Image Processin

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Compressed sensing performance bounds under Poisson noise

    Full text link
    This paper describes performance bounds for compressed sensing (CS) where the underlying sparse or compressible (sparsely approximable) signal is a vector of nonnegative intensities whose measurements are corrupted by Poisson noise. In this setting, standard CS techniques cannot be applied directly for several reasons. First, the usual signal-independent and/or bounded noise models do not apply to Poisson noise, which is non-additive and signal-dependent. Second, the CS matrices typically considered are not feasible in real optical systems because they do not adhere to important constraints, such as nonnegativity and photon flux preservation. Third, the typical 2\ell_2--1\ell_1 minimization leads to overfitting in the high-intensity regions and oversmoothing in the low-intensity areas. In this paper, we describe how a feasible positivity- and flux-preserving sensing matrix can be constructed, and then analyze the performance of a CS reconstruction approach for Poisson data that minimizes an objective function consisting of a negative Poisson log likelihood term and a penalty term which measures signal sparsity. We show that, as the overall intensity of the underlying signal increases, an upper bound on the reconstruction error decays at an appropriate rate (depending on the compressibility of the signal), but that for a fixed signal intensity, the signal-dependent part of the error bound actually grows with the number of measurements or sensors. This surprising fact is both proved theoretically and justified based on physical intuition.Comment: 12 pages, 3 pdf figures; accepted for publication in IEEE Transactions on Signal Processin
    corecore