128 research outputs found

    Truth and Regret in Online Scheduling

    Full text link
    We consider a scheduling problem where a cloud service provider has multiple units of a resource available over time. Selfish clients submit jobs, each with an arrival time, deadline, length, and value. The service provider's goal is to implement a truthful online mechanism for scheduling jobs so as to maximize the social welfare of the schedule. Recent work shows that under a stochastic assumption on job arrivals, there is a single-parameter family of mechanisms that achieves near-optimal social welfare. We show that given any such family of near-optimal online mechanisms, there exists an online mechanism that in the worst case performs nearly as well as the best of the given mechanisms. Our mechanism is truthful whenever the mechanisms in the given family are truthful and prompt, and achieves optimal (within constant factors) regret. We model the problem of competing against a family of online scheduling mechanisms as one of learning from expert advice. A primary challenge is that any scheduling decisions we make affect not only the payoff at the current step, but also the resource availability and payoffs in future steps. Furthermore, switching from one algorithm (a.k.a. expert) to another in an online fashion is challenging both because it requires synchronization with the state of the latter algorithm as well as because it affects the incentive structure of the algorithms. We further show how to adapt our algorithm to a non-clairvoyant setting where job lengths are unknown until jobs are run to completion. Once again, in this setting, we obtain truthfulness along with asymptotically optimal regret (within poly-logarithmic factors)

    On the Interplay between Social Welfare and Tractability of Equilibria

    Full text link
    Computational tractability and social welfare (aka. efficiency) of equilibria are two fundamental but in general orthogonal considerations in algorithmic game theory. Nevertheless, we show that when (approximate) full efficiency can be guaranteed via a smoothness argument \`a la Roughgarden, Nash equilibria are approachable under a family of no-regret learning algorithms, thereby enabling fast and decentralized computation. We leverage this connection to obtain new convergence results in large games -- wherein the number of players n≫1n \gg 1 -- under the well-documented property of full efficiency via smoothness in the limit. Surprisingly, our framework unifies equilibrium computation in disparate classes of problems including games with vanishing strategic sensitivity and two-player zero-sum games, illuminating en route an immediate but overlooked equivalence between smoothness and a well-studied condition in the optimization literature known as the Minty property. Finally, we establish that a family of no-regret dynamics attains a welfare bound that improves over the smoothness framework while at the same time guaranteeing convergence to the set of coarse correlated equilibria. We show this by employing the clairvoyant mirror descent algortihm recently introduced by Piliouras et al.Comment: To appear at NeurIPS 202

    08071 Abstracts Collection -- Scheduling

    Get PDF
    From 10.02. to 15.02., the Dagstuhl Seminar 08071 ``Scheduling\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Incentive-aware Contextual Pricing with Non-parametric Market Noise

    Full text link
    We consider a dynamic pricing problem for repeated contextual second-price auctions with strategic buyers whose goals are to maximize their long-term time discounted utility. The seller has very limited information about buyers' overall demand curves, which depends on dd-dimensional context vectors characterizing auctioned items, and a non-parametric market noise distribution that captures buyers' idiosyncratic tastes. The noise distribution and the relationship between the context vectors and buyers' demand curves are both unknown to the seller. We focus on designing the seller's learning policy to set contextual reserve prices where the seller's goal is to minimize his regret for revenue. We first propose a pricing policy when buyers are truthful and show that it achieves a TT-period regret bound of O~(dT)\tilde{\mathcal{O}}(\sqrt{dT}) against a clairvoyant policy that has full information of the buyers' demand. Next, under the setting where buyers bid strategically to maximize their long-term discounted utility, we develop a variant of our first policy that is robust to strategic (corrupted) bids. This policy incorporates randomized "isolation" periods, during which a buyer is randomly chosen to solely participate in the auction. We show that this design allows the seller to control the number of periods in which buyers significantly corrupt their bids. Because of this nice property, our robust policy enjoys a TT-period regret of O~(dT)\tilde{\mathcal{O}}(\sqrt{dT}), matching that under the truthful setting up to a constant factor that depends on the utility discount factor

    Online Pandora's Boxes and Bandits

    Full text link
    We consider online variations of the Pandora's box problem (Weitzman. 1979), a standard model for understanding issues related to the cost of acquiring information for decision-making. Our problem generalizes both the classic Pandora's box problem and the prophet inequality framework. Boxes are presented online, each with a random value and cost drew jointly from some known distribution. Pandora chooses online whether to open each box given its cost, and then chooses irrevocably whether to keep the revealed prize or pass on it. We aim for approximation algorithms against adversaries that can choose the largest prize over any opened box, and use optimal offline policies to decide which boxes to open (without knowledge of the value inside). We consider variations where Pandora can collect multiple prizes subject to feasibility constraints, such as cardinality, matroid, or knapsack constraints. We also consider variations related to classic multi-armed bandit problems from reinforcement learning. Our results use a reduction-based framework where we separate the issues of the cost of acquiring information from the online decision process of which prizes to keep. Our work shows that in many scenarios, Pandora can achieve a good approximation to the best possible performance
    • …
    corecore