1,902 research outputs found

    Dynamic railway junction rescheduling using population based ant colony optimisation

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Efficient rescheduling after a perturbation is an important concern of the railway industry. Extreme delays can result in large fines for the train company as well as dissatisfied customers. The problem is exacerbated by the fact that it is a dynamic one; more timetabled trains may be arriving as the perturbed trains are waiting to be rescheduled. The new trains may have different priorities to the existing trains and thus the rescheduling problem is a dynamic one that changes over time. The aim of this research is to apply a population-based ant colony optimisation algorithm to address this dynamic railway junction rescheduling problem using a simulator modelled on a real-world junction in the UK railway network. The results are promising: the algorithm performs well, particularly when the dynamic changes are of a high magnitude and frequency

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Planning of Truck Platoons: a Literature Review and Directions for Future Research

    Get PDF
    A truck platoon is a set of virtually linked trucks that drive closely behind one another using automated driving technology. Benefits of truck platooning include cost savings, reduced emissions, and more efficient utilization of road capacity. To fully reap these benefits in the initial phases requires careful planning of platoons based on trucks’ itineraries and time schedules. This paper provides a framework to classify various new transportation planning problems that arise in truck platooning, surveys relevant operations research models for these problems in the literature and identifies directions for future research

    A simheuristic for routing electric vehicles with limited driving ranges and stochastic travel times

    Get PDF
    Green transportation is becoming relevant in the context of smart cities, where the use of electric vehicles represents a promising strategy to support sustainability policies. However the use of electric vehicles shows some drawbacks as well, such as their limited driving-range capacity. This paper analyses a realistic vehicle routing problem in which both driving-range constraints and stochastic travel times are considered. Thus, the main goal is to minimize the expected time-based cost required to complete the freight distribution plan. In order to design reliable Routing plans, a simheuristic algorithm is proposed. It combines Monte Carlo simulation with a multi-start metaheuristic, which also employs biased-randomization techniques. By including simulation, simheuristics extend the capabilities of metaheuristics to deal with stochastic problems. A series of computational experiments are performed to test our solving approach as well as to analyse the effect of uncertainty on the routing plans.Peer Reviewe

    Hazardous Materials Transportation with Multiple Objectives: A Case Study in Taiwan

    Get PDF
    Hazardous material (hazmat) transportation has been an important issue for handling hazardous materials, such as gases and chemical liquids. In the past, researchers have made great efforts to develop policies and route planning methods for hazmat transportation problems. In 2014, Kaohsiung City in Taiwan suffered a gas pipeline explosion at midnight; 32 people were killed, and hundreds of people were injured. After the incident, policies and routing strategies for hazardous materials (hazmat) transportation in Kaohsiung were initiated to avoid pipeline transportation. Although methodologies for hazmat transportation have been proposed and implemented to minimize potential risks, multiple objectives need to be considered in the process to facilitate hazmat transportation in Taiwan. In order to consider both government and operators’ aspects, a multi-objective formulation for the hazmat problem is proposed and a compromise programming method is applied to solve the problem with two objectives: travel cost and risk. The path risk is defined based on risk assessment indexes, such as road characteristics, population distribution, link length, hazardous material characteristics, and accident rates. An aggregate risk indicator is proposed for roadway segments. The compromise programming approach is developed from the concept of compromise decision and the main idea is to search the compromise solution closest to the ideal solution. The proposed method is applied to Kaohsiung City, Taiwan. The results show that two conflicting objectives keep making trade-offs between each other until they finally reach a compromise solution
    • …
    corecore